Pressure induced transformation and subsequent amorphization of monoclinic Nb$_2$O$_5$ and its effect on optical properties

Zhou Guan1, Quanjun Li1,2,3, Huafang Zhang1, Pengfei Shen1, Lirong Zheng1, Shengqi Chu3, Changyong Park2, Xinguo Hong4, Ran Liu1, Peng Wang1, Bingbing Liu1 and Guoyin Shen2,5

1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People’s Republic of China
2 High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institute of Washington, Argonne, IL 60439, United States of America
3 Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
4 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, People’s Republic of China
5 X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, United States of America

E-mail: liquanjun@jlu.edu.cn and liubb@jlu.edu.cn

Received 9 July 2018, revised 11 December 2018
Accepted for publication 19 December 2018
Published 18 January 2019

Abstract

Pressure-induced phase transitions of monoclinic H-Nb$_2$O$_5$ have been studied by in situ synchrotron x-ray diffraction, pair distribution function (PDF) analysis, and Raman and optical transmission spectroscopy. The initial monoclinic phase is found to transform into an orthorhombic phase at ~9 GPa and then change to an amorphous form above 21.4 GPa. The PDF data reveal that the amorphization is associated with disruptions of the long-range order of the NbO$_6$ octahedra and the NbO$_7$ pentagonal bipyramids, whereas the local edge-shares of octahedra and the local linkages of pentagonal bipyramids are largely preserved in their nearest neighbors. Upon compression, the transmittance of the sample in a region from visible to near infrared (450–1000 nm) starts to increase above 8.0 GPa and displays a dramatic enhancement above 22.2 GPa, indicating that the amorphous form has a high transmittance. The pressure-induced amorphous form is found to be recoverable under pressure release, and maintain high optical transmittance property at ambient conditions. The recoverable pressure induced amorphous material promises for applications in multifunctional materials.

Keywords: Nb$_2$O$_5$, high-pressure, phase transitions, amorphization, transmittance

[Some figures may appear in colour only in the online journal]
The scientific research has never ceased from the initial tetrahedrally coordinated to octahedrally coordinated to complicated polyhedra. In recent years, PIA have also been reported in some other materials, such as perovskite [21–23], (Mg,Fe)2SiO4 olivine [24] and tungstate [25], which are important for scientific and technological applications. Despite the wide observations in various materials, the structural relations to their parent crystalline phases remain unclear.

The Nb2O5 has various applications in special optical glasses, chemical fiber panels, monolithic capacitors and piezoelectric ceramic elements because of its high dielectric constant, high refractive index, outstanding photoelectric properties, and high chemical stability [26–30]. This material is known to display several different polymorphs depending on pressure-temperature conditions to which this compound is subjected. The most commonly observed phases are as follows: H (P2/m, monoclinic), B (C2/c, monoclinic), N (C2/m, monoclinic), R (C2/m, monoclinic), M (I4/mmm, tetragonal), P (I422, tetragonal), T (Pbam, orthorhombic), and TT (monoclinic or pseudo-hexagonal) [31–33]. In most Nb2O5 polymorphs, Nb is in octahedral oxygen coordination (NbO6), except for the T- and TT-phases, where a fraction of Nb atoms are in sevenfold coordination (NbO7) and eightfold hexagonal bipyramid (NbO8) [33]. Thus, Nb2O5 is an appropriate case to study the underlying mechanism of PIA for a complicated system with various polyhedra. Recently, Kikuchi et al [17, 18] studied the phase transition of Nb2O5 under shock compression, and found that a transition from H-Nb2O5 to T-Nb2O5 occurs at a shock pressure of ~20 GPa, with the T-Nb2O5 further decomposing to a form of NbO2 via an intermediate step at a shock pressure of ~40 GPa. However, Serghiou et al [19] observed PIA in T-Nb2O5 and proposed that the PIA is accompanied by a reduction of pentavalent Nb with the loss of oxygen atoms. Subsequently, x-ray photoelectron and x-ray absorption spectroscopy measurements showed there is no such pressure-induced reduction in T-Nb2O5 [20]. To date, the nature of the structural phase transition and PIA in Nb2O5 has been complicated and unclear. In addition, there is still no experimental report about the definite PIA mechanism and property for the H-Nb2O5 phase under the condition of hydrostatic pressure. This work aims to provide insights into the understanding PIA mechanisms of H-Nb2O5 and explore pressure-induced amorphous materials with novel properties.

In this study, we have investigated the phase transitions in monoclinic H-Nb2O5 using in situ synchrotron x-ray diffraction (XRD), pair distribution function (PDF) analysis, and Raman and optical transmission spectroscopies. The monoclinic phase is found to transform into an orthorhombic phase at ~9 GPa and then change to an amorphous form above 21.4 GPa. The PIA mechanism for Nb2O5 is associated with the breakdown of the long-range order of the polyhedra (NbO6 octahedra and NbO7 pentagonal bipyramids). Moreover, the transmission spectra reveal an order of magnitude increase in the transmittance of pressure-induced amorphous Nb2O5, a dramatic enhancement likely linked to the structural characteristics of the amorphous material via the PIA.

2. Experimental

The Nb2O5 (99.9985% purity) powder used in the experiment was obtained from Alfa Aesar. High-pressure experiments were generated by using a symmetric diamond-anvil cell (DAC) with a pair of diamonds of culet size of 400 µm. A stainless-steel gasket with a 130 µm hole was used as the sample chamber. The sample and a small ruby ball were loaded in the chamber with silicone oil (Dow Corning PMX-200 silicone fluid with a viscosity of 10 cSt at 25 °C) for XRD or a 4:1 methanol-ethanol mixture for Raman and PDF as the pressure-transmitting medium. The hydrostatic limits for the 4:1 methanol-ethanol mixture and silicone oil are ~10.5 and ~3 GPa, respectively [34]. In optical transmission measurements, no pressure-transmitting medium was used. In situ angle-dispersive synchrotron XRD measurements under high pressure were carried out at the X17C beamline of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) and the 4W2 beamline of the Beijing Synchrotron Radiation Facility (BSRF), with the incident beam wavelengths of 0.4112 Å and 0.6199 Å, respectively. Some of the XRD experiments were carried out at the 16-BM-D beamline of the High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). Raman measurements were conducted using a LabRAM HR Evolution Raman spectrometer with 532 nm laser excitation. Data suitable for PDF analysis were collected at the 17B3 beamline of the NSLS, BNL. The high-pressure XAS measurements at the Nb K-edge (~18 986 eV) were performed at the 1W2 beamline of the BSRF. The sample and amorphous boron powder (as the pressure medium) were mixed and sealed inside the DAC. The pressure was determined using ruby fluorescence techniques [35]. Both the starting and quenched samples were characterized by using transmission electron microscopy (TEM) (200 KV, Hitachi, H-8100IV), and high-resolution transmission electron microscopy (HRTEM) (JEOL JEM-3010). The optical transmission spectra were collected with a Bruker Vertex 80V UV–visible spectrometer. The diffraction data were recorded on an MAR345 imaging plate, and then the 2D Debye–Scherer diffraction patterns were integrated into 1D data by using the Fit2D program. The XRD patterns were refined by using the GSAS software package with the Le Bail method [36]. PDF patterns were obtained by the program PDFgetX2 [37]. Background, Compton scattering, and absorption corrections were applied to the raw scattering data.

3. Results and discussion

3.1. XRD patterns at high pressures

Figure 1(a) shows the XRD patterns of Nb2O5 at selected pressures. All the observed diffraction peaks can be indexed with the monoclinic H-Nb2O5 phase below 4.7 GPa, shown in figure 1(b). With increasing pressure, the diffraction peaks are shifted to larger angles, indicating a pressure-induced reduction of d-spacing or shrinkage of the unit cells. Upon further compression to 5.9 GPa, several new peaks appear, indicating a transition to another phase. At 9.9 GPa, all the peaks of the...
monoclinic H-Nb$_2$O$_5$ phase disappear [38–40]. The peaks of the high-pressure phase above 9.9 GPa can be indexed with an orthorhombic structure similar to the orthorhombic L-Ta$_2$O$_5$ phase (space group P 2mm) [41–43]. This high pressure orthorhombic phase is different from the T-Nb$_2$O$_5$ (space group Pbam) [32]. Figure 1(c) shows the results of the refinement assuming the orthorhombic L-Ta$_2$O$_5$ structure for the high-pressure phase. Table 1 lists the refined parameters for the monoclinic (1.8 GPa) and orthorhombic (9.9 GPa) phases.

With further increasing pressure, most diffraction peaks disappear at 21.4 GPa, except the two broad bands at approximately 3.0 Å and 3.4 Å, which are associated with an amorphous phase [44, 45]. Subsequently, the two broad bands are further broadened and weakened with increasing pressure, yet still detectable up to a pressure of 28.7 GPa. Upon decompression, the amorphous phase is retained at ambient pressure, indicating its recoverability under decompression. In our case, the transition from H-Nb$_2$O$_5$ to the orthorhombic L-Ta$_2$O$_5$-like phase is different from the early reported H-Nb$_2$O$_5$-to-T-Nb$_2$O$_5$ transition induced by shock compression [17, 18]. Moreover, the PIA of H-Nb$_2$O$_5$ undergoes an intermediate orthorhombic phase, which is also different from those direct amorphization from the starting phase under high pressure that observed in TiO$_2$ [12], Y$_2$O$_3$ [14], Ta$_2$O$_5$ [16], and T-Nb$_2$O$_5$ [19].

Figure 2(a) shows the unit cell parameters of the monoclinic phase as a function of pressure. Obviously, the pressure dependences of the unit cell parameters of a, b, and c are different in the pressure range of 1.8–4.7 GPa. The different compressibilities along a, b and c axes indicate the anisotropic properties of the monoclinic phase. The pressure-volume data of the monoclinic phase is shown in figure 2(b). The pressure-volume data were fitted to the Birch–Murnaghan equation of state:

$$P = \frac{3B_0}{2} \left(\left(\frac{V}{V_0} \right)^{-\frac{3}{2}} - \left(\frac{V}{V_0} \right)^{-\frac{1}{2}} \right) \times \left(1 + \frac{3}{4} \left(\frac{B_0'}{B_0} - 4 \right) \left(\frac{V}{V_0} \right)^{-\frac{3}{2}} - 1 \right)$$

where B_0 and B_0' are the isothermal bulk modulus and its pressure derivative, respectively, and V_0 is the unit-cell volume at ambient pressure. The bulk modulus (B_0) of the monoclinic phase is determined to be 132(4) GPa, with B_0' fixed at 4. It is some lower than the calculated result of 158 GPa [33].

3.2. Raman spectra at high pressures

To further verify the pressure-induced phase transition of Nb$_2$O$_5$, we also conducted in situ high-pressure Raman spectra measurements, as shown in figure 3(a). From the group
There are 154 Raman active modes: 95 A_g and 49 B_g. At ambient conditions, the Raman spectra of H-Nb$_2$O$_5$, shown in figure 3(b), exhibit several peaks of the lattice vibrations including one sharp peak at 992 cm$^{-1}$ and several broad peaks at 112, 122, 230, 257, 299, 622, and 649 cm$^{-1}$ [46, 47]. The Raman peaks between 180 and 350 cm$^{-1}$ are the group characteristic of the Nb–O–Nb angle deformation. Those peaks between 380 and 520 cm$^{-1}$ correspond to the O-Nb3 structure. The peaks between 580 and 740 cm$^{-1}$ are assigned to the Nb–O–Nb bridging bond that leads to the anisotropy of the NO6 octahedra. The peaks at 800–900 cm$^{-1}$ are caused by corner-sharing NbO6 octahedra units. The sharp peak at 992 cm$^{-1}$ is attributed to edge-sharing NbO$_6$ octahedra units. The peaks below 180 cm$^{-1}$ are attributed to metal cation-cation bonds.

With increasing pressure, all Raman peaks exhibit blue shifts, and their intensities weaken gradually. Figure 3(b) shows the disappearance of the most characteristic peaks for H-Nb$_2$O$_5$ above ~8 GPa, such as those at 893, 834, 649, 622, 545, and 464 cm$^{-1}$; However, Raman peaks at 241, 688 and 1018 cm$^{-1}$ are still present. The peaks at 649 and 622 cm$^{-1}$ are merged into the peak at ~688 cm$^{-1}$. The peak at 1018 cm$^{-1}$ is caused by edge-sharing polyhedra, indicating edge-sharing polyhedra still remained. The Raman peaks between 100 and 450 cm$^{-1}$ in such oxide compounds generally correspond to O–Nb–O bending vibrations in the NbO$_6$ octahedra. Pure skeletal modes involving Nb–O–Nb bending coordinates in different types of polyhedra might contribute to several of these bending modes [48, 49]. As the pressure increased to 21.6 GPa, shown in figure 3(b), the Raman peaks disappear except the broad one at 690 cm$^{-1}$, which is consistent with the XRD data of the amorphous form [46]. The Raman bands are associated with the density of states of the amorphous phase [50]. In addition, the broad Raman peak at ~690 cm$^{-1}$ is retained in the quenched sample at ambient conditions, in agreement with the XRD data showing that the PIA is irreversible in Nb$_2$O$_5$.

3.3. HRTEM and selected area electron diffraction (SAED)

To reveal the amorphous character of the recovered Nb$_2$O$_5$ from high pressure, we carried out TEM, HRTEM and SAED pattern analysis of both the initial sample and the sample decompressed from 31.1 GPa. As shown in figure S2(a), the initial sample consists of irregular particles with sizes ranging from 0.8–2.8 µm. The HRTEM image, shown in figure 4(a), exhibits clear lattice fringes with the lattice spacings of 3.65 Å and 4.17 Å corresponding to (105) and (503) planes of monoclinic H-Nb$_2$O$_5$ (PDF 72-1121), respectively, indicating that the starting material has a good crystalline monoclinic structure. Figure S2(b) shows the TEM image of the amorphous Nb$_2$O$_5$ recovered from 31.1 GPa. As shown in figure 4(c), no lattice fringes are observed in the corresponding HRTEM image, demonstrating a totally disordered structure of the recovered sample. Figure 4(d) shows no clear and distinct diffraction rings, which further confirms that no long-range ordered structure exists in the recovered sample.

3.4. PDFs at high pressures

It is known that the monoclinic lattice of H-Nb$_2$O$_5$ contains $3 \times 4 \times \infty$ and $3 \times 5 \times \infty$ blocks comprising NbO$_6$ octahedra, in which each Nb atom is surrounded by six O atoms (the black boxes in figure 5(a)). These blocks are interconnected by edge-sharing (sharing two oxygen atoms) with a shift of...
a half unit cell dimension. Within a block, NbO$_6$ units are connected by corner-sharing (sharing one oxygen atom) with each other [33, 47]. The L-Ta$_2$O$_5$ phase is built up with an orthorhombic unit cell. The projection on the bc-plane and ab-plane are shown in figures 5(b) and (c), respectively. Each Nb atom is surrounded by 6 or 7 oxygen atoms, forming distorted octahedra or pentagonal bipyramids. These polyhedra are joined by edge-sharing or corner-sharing.

To unveil and understand the local structural evolution and the amorphization in this system, we carried out high-pressure PDF measurements of Nb$_2$O$_5$ up to 25.6 GPa. Figure 6 shows the high-pressure PDF $g(r)$ patterns for Nb$_2$O$_5$. Several typical peaks for the monoclinic structure in the PDF patterns are indexed at relatively low pressures. The first sharp peak at 1.92 Å corresponds to the Nb–O bond in NbO$_6$ octahedron, and the second peak at 2.73 Å to the nearest O–O bond. Specifically, the shifts of Nb–O and O–O peaks with pressure are very small, which indicates that these bonds are rigid and difficult to compress. The peaks at 3.31 Å and 3.85 Å may originate from the Nb–Nb1 bonds of the nearest edge-shared polyhedra and the Nb–Nb2 bonds of the nearest corner-shared polyhedra, respectively. From 8.5 GPa, we can clearly see that the Nb–Nb1 peak becomes stronger and the Nb–Nb2 peak
becomes weaker, indicating that some of the corner-shared NbO$_6$ octahedra convert into edge-shared NbO$_6$ octahedra or NbO$_7$ pentagonal bipyramids accompanied with the transition from the monoclinic phase to the orthorhombic phase. At the amorphization point of 21.4 GPa, peaks corresponding to distances larger than \sim5 Å start to disappear. Only four peaks at 2.02 Å, 2.67 Å, 3.27 Å and 3.72 Å that represent the bonds within each polyhedra and between the nearest NbO$_6$ octahedra and NbO$_7$ pentagonal bipyramids remain. This finding suggests that the local structure, concerning each individual polyhedron and their sharing nature to the nearest polyhedron, are largely preserved in the PIA, but the long-range order of the octahedra or pentagonal bipyramids are broken down in the process. It is clear that the Nb–Nb1 peak becomes stronger than that of Nb–Nb2 above 20.8 GPa. This means increasingly more corner-shared polyhedra transform into edge-shared polyhedra with increasing pressure. It has been found that the corner-shared polyhedra change into edge-shared polyhedra during amorphization and the edge-shared polyhedra with high density are preferred for the amorphous phase under high pressure [12, 16]. Therefore, the corner-shared configuration shows dramatic change under high pressure, i.e. an appreciable number of corner-shared polyhedral would undergo pronounced slip or shifts and even transform into the edge-shared configuration under high pressure. Thus, we suggest that the instability of the corner-shared polyhedra under high pressure plays an important role in the PIA transition in Nb$_2$O$_5$.

3.5. Optical micrographs and transmission spectra at high pressures

Figure 7(a) shows a few examples of in situ high pressure optical micrographs of Nb$_2$O$_5$ in a DAC chamber. Under ambient conditions, the material is opaque with a white color. With increasing pressure, we observe a novel phenomenon manifested in the transparency and color, shown in figure S3. The sample changes gradually from opaque to partly transparent up to 7.7 GPa, then becomes highly transparent above 21.3 GPa. When the sample is released from 30.0 GPa to ambient pressure, it still shows a high transmittance compared to the initial sample.

We carried out transmission spectroscopy measurements. The optical transmittance of Nb$_2$O$_5$ in the wavelength range of 450–1000 nm is shown in figure 7(b). We can see that the sample is initially opaque at ambient pressure (red-line) and the transmittance starts to change in the near infrared region (780–1000 nm) at \sim8.0 GPa. Particularly, the transmittance increases with increasing pressure to 22.2 GPa, reaching a level of approximately 52% transmission at a wavelength of 1000 nm. When the pressure increases to 30.5 GPa, the optical transmittance is maintained at the same value in the near infrared region, whereas the transmittance in the visible (500–750 nm) increases with increasing pressure. Obviously, the transmittance of Nb$_2$O$_5$ can be tuned by pressure. These results provide a new pathway to design materials with tailored properties.

For this change in color, it was observed that after T-Nb$_2$O$_5$ reached a pressure of 19.2 GPa, the color of the sample changed from white to black and the sample became amorphous. Serghiou et al [19] considered that the color change is probably associated with the formation of reduced niobium oxide defects. For our sample (H-Nb$_2$O$_5$), the x-ray absorption near edge structure spectra had no significant changes in
the structure and the absorption Nb K-edges are almost identical, indicating no appreciable change in the oxidation states, experimental results are shown in figure S4. Therefore, we suggest that the pressure-induced reduction of H-NbO3 does not occur in our case. The pressure-induced reduction is not the reason leading to the PIA in H-Nb2O5. Obviously, the PIA mechanism of H-Nb2O5 is different from that of T-Nb2O5.

4. Conclusions

In summary, the phase transition in H-Nb2O5 from the initial monoclinic phase to an orthorhombic phase starts at 5.9 GPa and completes at ~9 GPa. With increasing pressure, the orthorhombic phase transforms into an amorphous form at ~21.4 GPa. The pressure-induced amorphous phase is recoverable at ambient conditions. We suggest that the PIA of Nb2O5 is associated with the breakdown of the long-rang order of the polyhedra (NbO6 octahedra and NbO7 pentagonal bipyramids) and no redox reaction occurred during the amorphization. Interestingly, the in situ high-pressure optical micrographs and transmission spectra analysis reveal a dramatic enhancement in the transmittance of the pressure-induced amorphous Nb2O5. The results show that PIA could be a useful route for synthesizing new amorphous materials with exceptional properties and unique structural characteristics that possess both amorphous nature lacking long-range order and local structure inherited from parent crystalline phases.

Acknowledgments

This work was financially supported by the NSFC (11374120, 11604116 and 51320105007), National Basic Research Program of China (2011CB808200), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1132), the visiting scholar project funded by China Scholarship Council, and the Cheung Kong Scholars Programme of China. GS acknowledges the support of DOE-BES/DMSE of China. GS acknowledges the support of DOE-NNSA under Award No. DE-NA0001974 and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1132), the visiting scholar project funded by China Scholarship Council, and the Cheung Kong Scholars Programme of China. GS also acknowledges the support of DOE-BES/DMSE and the Cheung Kong Scholars Programme of China. GS acknowledges the support of DOE-BES/DMSE and the Cheung Kong Scholars Programme of China. GS also acknowledges the support of DOE-BES/DMSE and the Cheung Kong Scholars Programme of China.

ORCID iDs

Quanjun Li https://orcid.org/0000-0002-4718-4156
Changyong Park https://orcid.org/0000-0002-3363-5788
Bingbing Liu https://orcid.org/0000-0002-0152-4469
Guoyin Shen https://orcid.org/0000-0001-5146-1147

References

[32] Zhao Y, Zhou X, Ye L and Chi Edman Tsang S 2012 Nanostructured Nb2O5 catalysts Nano Rev. 3 17631

[38] Zibrov I, Filonenko V, Werner P-E, Marinder B-O and Sundberg M 1998 A new high-pressure modification of Nb2O5 J. Solid State Chem. 141 205–11

[40] Filonenko V and Zibrov I 2001 High-pressure phase transitions of M2O5 (M = V, Nb, Ta) and thermal stability of new polymorphs Inorg. Mater. 37 953–9

[43] Marinder B-O 2001 Moser’s C-line, the apparent multiplicity m’ and modules in descriptions of L-Ta2O5 and related structures J. Solid State Chem. 160 62–8

