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ABSTRACT: An alkali-metal bismuth iodate, Na;Bi(I10;), was successfully obtained by the hydrothermal method for the first time
and contains intriguing one-dimensional [Bil4O,5] chains. High-pressure Raman spectra were carried out to investigate the structural
transition of Na;Bi(IO;). Electronic states and anisotropic optical responses were also investigated by theoretical calculations.

Iodates(V) possess abundant structural diversity because of
stereochemically active lone-pair electrons.'™* In iodates-
(V), I** cations usually adopt three- or four-coordinated
environments to form the [IO;] or [I0,] fundamental unit.
Furthermore, [IO;] and [IO,] units can be isolated or
connected with each other, which results in the formation of
other various units such as [I,0;] and [1;04].°~" Additionally,
iodates(V) generally possess high optical anisotropy, which can
influence multiple properties, such as second harmonic
generation (SHG), piezoelectricity, birefringence, and photo-
catalysis."' ~'® In recent years, a series of excellent iodates with
the above functions have been found, including LiM"(I0;),
(M" = Zn, Cd, Mg), ABi,(10,),Fs (A = NH,, K, Rb, Cs),
Y(103)5, and MIO,F (M = Zn, Cd)."*™**

Combining various structural units into one compound is an
effective strategy for enhancing the performance of functional
materials through the synergistic effect between structural
units.”>~*° Similar with I** cations, Bi** cations also contain
lone-pair electrons. Therefore, introducing Bi** cations into
iodates can further modulate the functional properties.”’
Several multifunctional materials have been discovered in
bismuth iodates.”* > For example, BilO,, a new type of polar
material, not only exhibits a large SHG response but also
displays high photocatalytic activities for reactive oxygen
species generation and CO, reduction because the large
macroscopic polarization originates from Bi** and I’*
cations.”' ~%?

Pressure, as an important thermodynamic parameter, has
always been an effective tool for modulating the crystal
structure and inducing interesting transitions in the structures
and properties.***° High pressure generally can reduce the
distance between atoms in a controllable way, resulting in the
discovery of hidden phenomena in materials.””~*’ Up to now,
only four iodates, i.e., LilO;, KIO;, AglO;, and Fe(10;);, have
been investigated under the condition of high pressure,*'~*°
which prompted us to further investigate the high-pressure
behavior of iodates.
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In order to increase the band gap and obtain high-
transmittance optical anisotropy materials, we introduce alkali
metals into bismuth iodates. A new iodate with a novel
structural feature, NayBi(10;)s, was obtained by the hydro-
thermal method. The pressure-induced structural transition
was investigated for the first time. Thermal analysis, IR,
Raman, and UV—vis diffuse-reflectance spectra, and theoretical
calculations were performed to further understand the
structure—property relationships.

Submillimeter pale-yellow single crystals of Na;Bi(10;),
were obtained by the hydrothermal method (the experimental
details are shown in the Supporting Information). The purity
of the sample was verified by powder X-ray diffraction (XRD)
analysis, as shown in Figure la. The experimental powder XRD
pattern was well-consistent with the simulated one based on
the single-crystal crystallographic data. Energy-dispersive X-ray
spectroscopy (EDS) analysis (Figure S1) confirmed the

(a) (b)

‘ —— Experimental

Simulated

Reflectance (%)

F(R) (a.u.)

Intensity (a.u.)

2Theta (deg.) Energy (eV)

Figure 1. (a) Powder XRD patterns and (b) experimental band gap of
Na,Bi(10,)q.
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presence of Na, Bi, and I atoms, and the molar ratio of Na/Bi/I
(3.88:1.09:5.52) was comparable to the stoichiometric ratio,
which verified the correctness of the single-crystal XRD
analysis.

Na;Bi(I0;), crystallizes in the triclinic P1 space group with
cell parameters of a = 7.2013(2) A, b = 8.9076(2) A, ¢ =
14.5054(3) A, a = 105.441(2)°, B = 94.536(2)°, and y =
99.331(2)°. The detailed crystal data of Na;Bi(10;) are listed
in Tables S1—S3. A total of 1 unique Bi, 3 unique Na, 6 unique
I, and 18 unique O atoms constitute its asymmetric unit. All
atoms are located on the general Wyckoff position 2i. Every I
atom is bonded with three O atoms to build a [10;] unit with
I-0 bond lengths in the range of 1.780(5)—1.850(5) A, which
match well with the previously reported values (Figure 2a).>*

Figure 2. (a) [105] unit, (b) [BiOg] polyhedron, (c) [BilzO,,] group,
(d) [Bil¢Oy5] chain, and (e) unit cell of Na;Bi(10;)s.

The Bi atoms are eight-coordinated, with O atoms forming
distorted [BiOg] polyhedra with Bi—O bond lengths ranging
from 2.279(5) to 2.802(7) A (Figure 2b). Each [BiOg]
polyhedron connects with eight [IO;] units by corner-sharing
O atoms, forming the [Bil3O,,] group (Figure 2c).
Furthermore, neighboring [BilgO,,] groups polymerize by
sharing [IO;] units to generate the one-dimensional (1D)
[Bil,O,] chains (Figure 2d). All of the Na atoms are bonded
to six O atoms to build [NaO4] polyhedra (Figure S2a).
[NaOg] polyhedra connect with each other by corner- or edge-
sharing O atoms to form 1D [Na;O,;] chains (Figure S2b,c).
1D [BilgO,5] and [Na;O,;] chains connect by sharing O
atoms to form a three-dimensional structure (Figure 2e). The
valence states of all atoms were calculated according to the
bond valence sum, and the results are in good agreement with
the theoretical ones (Table $2).*

In order to further understand the structural relationships
between Na;Bi(I0;)s and other alkali-metal bismuth iodates,
the structures with the molecular formula of M,Bi(10;);,, (M
= alkali metal; x is an integer) are summarized in Table S4.
The bond length of Bi—O is limited to less than 2.81 A and the
bond length of I-O is limited to less than 2.30 A based on refs
47—49. The molecular formula of M,Bi(I0;);,, can be
recognized as the combination of M,(1I0;), and Bi(I0;)s. As
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can be seen from Table S4, when the values of x are 0 and 1,
the compounds possess 2D [Bil;O0,] and [Bil,O,,] layers, and
the molar ratios of M/(Bi + I) are only 0 and 1/5, respectively.
The small amount of alkali metal could not break the
polymerization of [BilO] groups, which tend to form 2D
layers (Figure S3). With increasing «, the dimensionality of the
[BiIO] group begins to decrease. When x = 2 and 3, the
corresponding compounds contain 1D [Bil;O;] and [Bil4O4]
chains, respectively (Figures S3 and 2). The molar ratio of M/
(Bi + I) for NayBi(IO;)g4 is up to 3/7. It can be speculated that
M,Bi(10;),,, may have 0D [BilO] cluster structures as the
value of x is increased to a certain extent.

IR and Raman spectra were measured to understand the
microscopic coordination information on Na;Bi(10;), (Figure
S4). The sharp absorption peaks at 825, 787, 753, and 677
cm™!in the IR spectrum and 822, 803, 790, 761, 753, 711, 685,
and 668 cm™! in the Raman spectrum are assigned to the
asymmetric (v;) and symmetric (v;) stretching vibrations of
the [IO;] units. The peaks at 422 cm™" in the IR spectrum and
419 cm™! in the Raman spectrum are attributed to the Bi—O
vibrations. The results of the IR and Raman spectra confirm
the existence of Bi—O bonds and [IO;] units in the structure
of Na;Bi(IO;)s, which is consistent with the single-crystal
XRD data.

In order to investigate the structural changes of Na;Bi(10;),
under high pressure, high-pressure Raman spectra were carried
out. On the basis of the above IR and Raman spectra, the
vibrations of [I0;] units concentrate in the range of 650—850
cm™!, high-pressure Raman spectra and Raman shift versus
pressure in this range are shown in Figure 3, and Raman
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Figure 3. (a) High-pressure Raman spectra and (b) Raman shift
versus pressure of Na;Bi(10;)s.

vibrational modes (v, and v3) of the [IO,] units are displayed
in Figure S5. The Raman spectrum under 0.3 GPa is in
agreement with that under ambient pressure. It is obvious that
most of the Raman peaks move to high wavenumbers with an
increase of the pressure, which implies that most I-O bonds
are compressed. However, the Raman peaks at 761 and 709
cm™! move to low wavenumbers. This phenomenon indicates
that there are elongated I-O bonds in the [I0;] units, which
can also be found in the high-pressure investigation of
Fe(10,);.* With increasing pressure to 1.9 GPa, two new
Raman peaks are emerged at 769 and 709 cm™', respectively.
Besides, Raman peaks at 797 and 752 cm™ disappeared in the
following compression process. The appearance of new peaks
and the disappearance of existing peaks in this pressure point
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imply that the original [IO;] vibrational mode is changed.
Because the pressure regulates the I—O bond lengths in the
[I05] units, which leads to most I-O bonds being shortened
and a few I-O bonds being elongated, the original
configurations of the [10;] units are broken and new distorted
[I05] units are formed. The change of the [I0;] units further
influences the crystal structure, which implies that a new phase
II is formed at 1.9 GPa. When the pressure reaches up to 8.2
GPa, a new change appears. The Raman peak at 673 cm™'
splits into two peaks, and a new peak emerges at 806 cm™'.
This phenomenon indicates that the [IO;] units further distort
under higher pressure, and a new phase transition occurs. As
the pressure further increases, all Raman peaks move to high
wavenumbers, which indicates that all of the [10;] units are
compressed in the following process. In the previous
reports,”>*> the lone-pair electrons of I°* cations are gradually
suppressed and the coordination numbers are increased under
compression. Thus, in the new phase III, the [IO;] units have a
trend of combining with neighboring O atoms to generate new
[I0,] (x = 4, S, or 6) units in the following compression.
Overall, during the whole compression process, the [IO]
vibrational mode is altered twice, which implies that it
experiences two structural phase transitions, phases II and
III. Besides, as the pressure releases to ambient pressure, the
Raman spectrum also returns, indicating that Na;Bi(10;), has
undergone reversible phase transitions. Further structural
characterization under pressure is in progress.

The thermal behavior of Na;Bi(10;); was observed by
thermal gravimetric (TG) and differential scanning calori-
metric (DSC) analysis. Na;Bi(IO;)s has a relatively high
thermal stability of up to 400 °C (Figure S6). Three obvious
endothermic peaks appeared at 431, 556, and 654 °C,
respectively. From 420 to 870 °C, the total mass loss was
75.9%, accounting for the decomposition process of three
molecules of 1,0, which is consistent with the calculated value
of 75.4%. The band gap of Na;Bi(10;)s was estimated by UV—
vis diffuse-reflectance spectroscopy. As shown in Figure 1b, the
experimental band gap is 3.21 eV, which is comparable to that
of the previously reported bismuth iodates.****

To better understand the structure—property relationships
of Na,Bi(10;),, first-principles calculations were carried out.
Calculations indicate that Na;Bi(IO;)s possesses an indirect
band gap with a value of 3.34 eV (Figure S7), which is slightly
higher than the experimental value of 3.21 eV. Compared with
other iodates (Table S4), its calculated band gap was
overestimated, and the reasons will be further investigated.
The density of states (DOS) and partial density of states
(PDOS) of Na;Bi(10;)¢ are shown in Figure 4a. It is obvious
that the valence band maximum is mainly derived from the O
2p orbital and the conduction band minimum is mostly
composed of I 5s5p and O 2p orbitals with a small amount of
mixing of the Bi 6p orbital. The results imply that I-O and
Bi—O bonds have an important role in the optical properties of
Na;Bi(10;),.

The refractive index is generally deemed to be a major
parameter to assess the optical anisotropy of compounds. The
refringence at different wavelengths of Na;Bi(I10;), is shown in
Figure 4b using the first-principles calculations. It is found that
Na;Bi(10;)¢ is a negative biaxial optical crystal and has a
relatively large birefringence, which is 0.13 at 800 nm. To trace
the source of the refractive index, the electron location
function (ELF) of the I** and Bi** cations is displayed in
Figure 4c. The contributions of the [BiOg] and [IO;] units to
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Figure 4. (a) PDOS and total DOS, (b) calculated refractive index,
and (c) ELF of Na;Bi(10;).

the birefringence are calculated to be 0.03 and 0.07 at 800 nm,
respectively (Figure S8). It was found that the synergistic effect
of lone-pair electrons on I°* and Bi** cations leads to the
anisotropy of the electronic distribution, which finally
generates a large birefringence in Na;Bi(10;),.

In conclusion, a new alkali-metal bismuth iodate, Na;Bi-
(10;)¢ with intriguing 1D [BilqO,4] chains was successfully
obtained by the hydrothermal reaction. The structures with the
molecular formula of M,Bi(10;);,, (M = alkali metal) were
investigated, and it was shown that, with an increase of the
molar ratio of M/(Bi + I), the dimensionality of M,Bi(10;);,.
decreases. High-pressure Raman spectra implied that Na;Bi-
(10;)¢ went through two reversible phase transitions caused by
changes of the [IO;] vibrational mode. First-principles
calculations demonstrated that Na,Bi(I0;)¢ had a relatively
large birefringence An = 0.13 at 800 nm. This work enriches
the structural diversity of iodate chemistry and provides a new
strategy for exploring novel functional materials under the
condition of high pressure.
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