1. Introduction

White light-emitting diodes (WLEDs) have received much attention as next-generation light sources, owing to their low energy consumption, high efficiency and long lifetime.\(^1\)–\(^4\) Currently, the commercial WLED is obtained by coupling the \(Y_2Al_5O_12:Ce_3_\) (YAG:Ce\(^{3+}\)) yellow phosphor with a blue-chip (InGaN/GaN).\(^5\)–\(^7\) However, this type of WLED suffers from the drawbacks of a high correlated color temperature (CCT > 4500 K) and low color-rendering index (CRI, \(R_a < 70\)), due to the lack of red components, limiting its application range.\(^8,9\)

To solve this problem, people are devoted to exploring new red-emitting phosphors. Eu\(^{3+}\)-doped nitride and sulfide phosphors have excellent red light-emitting performance.\(^10\)–\(^12\) However, nitride phosphor synthesis requires harsh synthesis conditions, e.g., high temperature, high atmospheric pressure, and relatively expensive raw materials, which increase the cost of production. Poor chemical stability and moisture sensitivity also restricted sulfide phosphor application in WLEDs. Therefore, it is desirable to explore highly efficient, stable and low-cost red phosphors through a milder synthetic route.

In recent years, narrow-band emission Mn\(^{4+}\)-doped red phosphors have attracted lots of attention due to their high luminous efficacy, good thermal stability and low cost. Mn\(^{4+}\)-doped fluoride phosphors exhibit strong narrow red emission peaking at 630 nm under UV and blue light excitation. Many Mn\(^{4+}\)-doped fluoride phosphors were applied as red components for warm WLEDs. A series of Mn\(^{4+}\)-doped fluoride phosphors such as \(A_2MF_6:Mn^{4+}\) (\(A = NH_4^+, K^+, Rb^+, or Cs^+; M = Si^{4+}, Ti^{4+}, Ga^{3+}, Ge^{4+}, Sn^{4+}, or Hf^{4+}\)),\(^13\)–\(^18\) \(BMF_6: Mn^{4+}\) (\(B = Ba\) or \(Zn; M = Si, Ge, or Ti)\),\(^19\)–\(^21\) \(A_2BMF_6:Mn^{4+}\) (\(A/B = Li^+, Na^+, or K^+; M = Al^{3+} or Ga^{3+}\)),\(^22\)–\(^25\) and \(K_2MF_7:Mn^{4+}\) \((M = Ta\) or \(Nb)\)\(^26\) have been reported. Recently, Hu et al. successfully synthesized Mn\(^{4+}\)-activated oxyfluoride \(Na_2WO_2F_4\) with strong ZPL intensity. They claimed that this spectral feature originates from the highly distorted local coordination environment of \(WO_2F_4\) with \(C_{2v}\) group symmetry.\(^27\) Fluoride phosphors such as \(K_2SiF_6:Mn^{4+}\), etc. lack the zero phonon line (ZPL) which is related to the point symmetry of the \(MnF_6\) octahedra with the inversion symmetry.\(^28,29\) When Mn\(^{4+}\) local symmetry is distorted to lose the inversion centre, the ZPL emission will be allowed and then possibly dominate the emission spectrum of Mn\(^{4+}\). This feature provides a method to modify the Mn\(^{4+}\) emission peak position so that the (oxy)fluoride phosphors can match different application requirements. However, there are very few kinds of Mn\(^{4+}\)-doped (oxy)fluoride phosphors that show strong intensity of the ZPL.

In this paper, BaNbF\(_7\):Mn\(^{4+}\) phosphor was synthesized based on a conventional co-precipitation method. This phosphor exhibits light pink in daylight and red emission under blue light excitation. We combined a blue LED chip with the YAG:Ce\(^{3+}\) yellow phosphor and BaNbF\(_7\):Mn\(^{4+}\) red phosphor to make a warm WLED. Low color temperature and high color rendering index values of this WLED device were obtained.
indicating that BaNbF$_7$:Mn$^{4+}$ is an excellent red phosphor for WLEDs.

2. Experimental section

2.1. Materials and synthesis

The raw materials Nb$_2$O$_5$ (99.99%), Ba(CH$_3$COO)$_2$ (AR), H$_2$O$_2$ (30%) and HF (49 wt%) were obtained from Sinopharm Chemical Reagent Co., Ltd. KHF$_2$ (99.99%) and KMnO$_4$ (99.99%) were obtained from Aladdin Industrial Inc. The BaNbF$_7$:Mn$^{4+}$ samples were prepared by a co-precipitation method according to the synthetic route illustrated in Fig. 1. A certain amount of Nb$_2$O$_5$ was added to a 50 mL Teflon-lined autoclave containing 4 mL of HF solution with stirring for 30 min. The Teflon-lined autoclave was heated at 120 °C for 30 min, and a transparent solution was obtained after the system was cooled down to room temperature. A certain amount of K$_2$MnF$_6$ was added into the solution and stirred for 30 minutes. Then a stoichiometric amount of Ba(CH$_3$COO)$_2$ (aq.) was slowly added into the solution at a dropping speed of 0.2 ml min$^{-1}$ and aged for 24 hours. The resulting pink products were washed with absolute ethanol several times and dried at 60 °C. The pure BaNbF$_7$ phase can be obtained as expressed by the following equation:

$$2\text{Ba(CH}_3\text{COO)}_2 + \text{Nb}_2\text{O}_5 + 14\text{HF} = 2\text{BaNbF}_7 + 4\text{CH}_3\text{COOH} + 5\text{H}_2\text{O}$$

(1)

2.2. Characterization

Single crystal X-ray diffraction (XRD) data were collected on a Bruker PHOTON II CPAD diffractometer (Cu-Kα radiation) at 293 K by the φ and ω scan mode and reduced using the Crystal Clear Program. The crystal structure of BaNbF$_7$ was solved by a direct method using the SHELXTL$^\text{™}$ package of crystallographic software and refined by the full-matrix least-squares technique on F2. The powder XRD data were collected on a Rigaku Mini Flex 600 X-ray powder diffractometer (40 kV, 15 mA, Cu Kα radiation $\lambda = 0.15418$ nm) in a continuous scanning mode in the range of 2θ from 10° to 80°. Rietveld refinement of powder XRD data were carried out using the Topas 5.0 software package. The crystal structure of BaNbF$_7$ was optimized by density functional theory (DFT) using the Broyden–Fletcher–Goldfarb-Shanno (BFGS) method. The electronic structure and density of states (DOS) of BaNbF$_7$ were calculated according to the Cambridge Serial Total Energy Package (CASTEP)33 with eigenenergy convergence of self-consistent field (SCF) within 1.0 \times 10$^{-7}$ eV per atom. UV-visible diffuse reflectance spectroscopy (DRS) data of powder samples were collected from 200 to 800 nm on a UV-Vis-NIR spectrophotometer (Shimadzu, UV-3600). The scanning electron microscopy (SEM) images and Energy Dispersive X-ray (EDX) mapping results of samples were obtained using a Philips-FEI Quanta 200 scanning electron microscope equipped with an INCA-Oxford energy-dispersive X-ray spectrometer. The accelerating voltage was set to 10 kV for image capture, and 20 kV for EDX operation. The luminescence properties such as photoluminescence excitation (PLE) spectra, photoluminescence (PL) spectra and temperature-dependent emission spectra were obtained from a Hitachi F-4600 and Edinburgh FLS920 fluorescence spectrophotometer. For the in situ high-pressure characterization, standard symmetrical diamond-anvil cells (DACs) were used in all high-pressure measurements. The Mn$^{4+}$-doped BaNbF$_7$ phosphor was pressed into a pellet and loaded into the sample chamber, which was filled with silicone oil as the pressure transmitting medium (PTM). The pressure was calibrated by adding ruby spheres as the fluorescent pressure indicator. High-pressure Raman experiments were performed in a Renishaw inVia spectrometer using a 532.1 nm excitation laser.

2.3. Fabrication of WLEDs

A WLED device was fabricated with a blue InGaN chip, the commercial yellow phosphor YAG:Ce$^{3+}$, and the as-synthesized red phosphor BaNbF$_7$:Mn$^{4+}$. Luminescence properties of the as-fabricated devices were measured under different drive currents from 25 to 350 mA by using an integrating sphere spectroradiometer system (HAAS-1200, Everfine).

3. Results and discussion

3.1. Phase identification and structural analysis

A new fluoride BaNbF$_7$ has been prepared via the conventional co-precipitation method. The powder XRD pattern of BaNbF$_7$ is the same as that of oxyfluoride BaNbOF$_5$ (JCPDS No. 048-749), which is characterized by X-ray powder diffraction in 1992. However, the single crystal of oxyfluoride BaNbOF$_5$ has not been reported. The crystal structure of BaNbF$_7$ has been analyzed by single-crystal XRD. The typical SEM image of BaNbF$_7$ crystals is shown in Fig. 2. They are in the shape of a cube and have a larger particle size (20–30 μm) with smooth surfaces, clear edges and corners, which implies that this sample has been well crystallized. Single crystal X-ray diffraction reveals that BaNbF$_7$ crystallizes in the cubic space group of Pa3 (No. 205) and Z = 8 with the unit cell parameters of a = 5.0 software package. The crystal structure of BaNbF$_7$ was optimized by density functional theory (DFT) using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.32 The electronic structure and density of states (DOS) of BaNbF$_7$ were calculated according to the Cambridge Serial Total Energy Package (CASTEP)33 with eigenenergy convergence of self-consistent field (SCF) within 1.0 \times 10$^{-7}$ eV per atom. UV-visible diffuse reflectance spectroscopy (DRS) data of powder samples were collected from 200 to 800 nm on a UV-Vis-NIR spectrophotometer (Shimadzu, UV-3600). The scanning electron microscopy (SEM) images and Energy Dispersive X-ray (EDX) mapping results of samples were obtained using a Philips-FEI Quanta 200 scanning electron microscope equipped with an INCA-Oxford energy-dispersive X-ray spectrometer. The accelerating voltage was set to 10 kV for image capture, and 20 kV for EDX operation. The luminescence properties such as photoluminescence excitation (PLE) spectra, photoluminescence (PL) spectra and temperature-dependent emission spectra were obtained from a Hitachi F-4600 and Edinburgh FLS920 fluorescence spectrophotometer. For the in situ high-pressure characterization, standard symmetrical diamond-anvil cells (DACs) were used in all high-pressure measurements. The Mn$^{4+}$-doped BaNbF$_7$ phosphor was pressed into a pellet and loaded into the sample chamber, which was filled with silicone oil as the pressure transmitting medium (PTM). The pressure was calibrated by adding ruby spheres as the fluorescent pressure indicator. High-pressure Raman experiments were performed in a Renishaw inVia spectrometer using a 532.1 nm excitation laser.

A WLED device was fabricated with a blue InGaN chip, the commercial yellow phosphor YAG:Ce$^{3+}$, and the as-synthesized red phosphor BaNbF$_7$:Mn$^{4+}$. Luminescence properties of the as-fabricated devices were measured under different drive currents from 25 to 350 mA by using an integrating sphere spectroradiometer system (HAAS-1200, Everfine).

3. Results and discussion

3.1. Phase identification and structural analysis

A new fluoride BaNbF$_7$ has been prepared via the conventional co-precipitation method. The powder XRD pattern of BaNbF$_7$ is the same as that of oxyfluoride BaNbOF$_5$ (JCPDS No. 048-749), which is characterized by X-ray powder diffraction in 1992. However, the single crystal of oxyfluoride BaNbOF$_5$ has not been reported. The crystal structure of BaNbF$_7$ has been analyzed by single-crystal XRD. The typical SEM image of BaNbF$_7$ crystals is shown in Fig. 2. They are in the shape of a cube and have a larger particle size (20–30 μm) with smooth surfaces, clear edges and corners, which implies that this sample has been well crystallized. Single crystal X-ray diffraction reveals that BaNbF$_7$ crystallizes in the cubic space group of Pa3 (No. 205) and Z = 8 with the unit cell parameters of a =
9.8855(1) Å and $V = 966.0 (5)$ Å3. The detailed crystallographic data and structure refinement results are listed in Tables 1 and 2. The atomic displacement parameters, selected bond length and bond angles based on the single crystal data are listed in Tables S1 and S2.† The experimental powder XRD patterns of BaNbF$_7$ and BaNbF$_7$::Mn$^{4+}$ are in good agreement with the simulation results based on the single crystal data (Fig. S1). The Rietveld refinement of powder XRD data is depicted in Fig. 3a which also shows good fitting residual factors of $R_p = 8.29\%$, $R_{wp} = 5.81\%$, and GOF = 1.18.

The crystal structure of BaNbF$_7$ is depicted in Fig. 3e. The coordination environment surrounding Ba$^{2+}$ cations is shown in Fig. 3b and c; there are two kinds of Ba$^{2+}$ sites with eight and twelve coordination number. The bond length of Ba–F varies from 2.714(5) to 2.842(4) Å. The Nb$^{5+}$ cations are co-ordinated with seven F$^-$ ions, forming an octahedral coordination geometry with Nb–F distances ranging from 1.914(4) to 2.011(4) Å. Highly distorted [NbF$_7$]$^{2-}$ polyhedra with C_{3v} group symmetry were interconnected by Ba$^{2+}$ ions in the crystal structure.

3.2. Electronic band structure

The electronic structure calculation of BaNbF$_7$ was performed based on DFT by using the CASTEP module of the Materials Studio package. As shown in Fig. 4a, the top point on the valence band (VB) and the bottom point on the conduction band (CB) are not located at one point, and BaNbF$_7$ possesses an indirect band gap of about 5.14 eV. This means that BaNbF$_7$ is a good luminescent host for Mn$^{4+}$ owing to its wide band gap. The composition of the computed band structures can be further determined from the partial density of states (PDOS) and total density of states (TDOS) diagram (Fig. 4b). The conduction band is mainly composed of the s and p orbitals of Ba and Nb, while F 2p orbitals mainly compose the valence band.

To verify the above theoretical model, the diffuse reflectance spectra (DRS) of the host BaNbF$_7$ and BaNbF$_7$::Mn$^{4+}$ are illustrated in Fig. 4c. The decreasing reflectance of non-doped BaNbF$_7$ (solid blue line) from 200 to 320 nm is ascribed to the host absorption. This spectrum can be further transferred into the energy level to estimate its band gap according to the following equation:

$$ (a h \nu)^n = A (h \nu - E_g) $$

Table 1 Crystallographic data for BaNbF$_7$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>BaNbF$_7$</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Cubic</td>
</tr>
<tr>
<td>Space group</td>
<td>$Pmar{3}$ (No. 205)</td>
</tr>
<tr>
<td>Lattice parameters (Å)</td>
<td>$a = 9.8855 (1)$</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>966.0 (5) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Bruker photon II CPAD</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Cu Kα ($\lambda = 1.54178$ Å)</td>
</tr>
<tr>
<td>Scan mode</td>
<td>ϕ and ω scans</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>153</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.03 × 0.03 × 0.03</td>
</tr>
<tr>
<td>Crystal color</td>
<td>Clear light colourless</td>
</tr>
<tr>
<td>Absorption correction µ (mm$^{-1}$)</td>
<td>83.46</td>
</tr>
<tr>
<td>F(000)</td>
<td>1280</td>
</tr>
<tr>
<td>θ range (deg)</td>
<td>3.9 ≤ θ ≤ 34.15</td>
</tr>
<tr>
<td>Indep refs</td>
<td>227 [R$_{int}$ = 0.079]</td>
</tr>
<tr>
<td>Measured reflections</td>
<td>3472</td>
</tr>
<tr>
<td>Final R indices ([I > 2σ(I)]</td>
<td>$R_{I} = 0.0790 \text{ wR}_{I} = 0.0679$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$B_{c} = 0.0420 \text{ wR}_{c} = 0.0757$</td>
</tr>
<tr>
<td>Goodness-of-fit (on F^2)</td>
<td>1.083</td>
</tr>
</tbody>
</table>

Table 2 Crystallographic data of the BaTaF$_7$

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>s.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba1</td>
<td>1.00000</td>
<td>0.50000</td>
<td>1.00000</td>
<td>1</td>
</tr>
<tr>
<td>Ba2</td>
<td>0.50000</td>
<td>0.00000</td>
<td>0.05000</td>
<td>1</td>
</tr>
<tr>
<td>Nb</td>
<td>0.7768(4)</td>
<td>0.2231(6)</td>
<td>0.7231(6)</td>
<td>1</td>
</tr>
<tr>
<td>F1</td>
<td>0.6646(4)</td>
<td>0.3354(4)</td>
<td>0.8354(4)</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>0.8999(4)</td>
<td>0.3632(4)</td>
<td>0.7753(4)</td>
<td>1</td>
</tr>
<tr>
<td>F3</td>
<td>0.7427(4)</td>
<td>0.0531(5)</td>
<td>0.6168(4)</td>
<td>1</td>
</tr>
</tbody>
</table>
where $h\nu$ is the photon energy, A is a constant, E_g is the band gap value and α is the absorption coefficient.31,32 The values of $(ah\nu)^{1/2}$ are plotted as a function of the incident photon energy ($h\nu$) in Fig. 4c. The value of E_g can be extrapolated to be ~ 5.37 eV. It is similar to the 5.14 eV determined from the DFT calculation. Compared with the non-doped host BaNbF$_7$, the red phosphor BaNbF$_7$:Mn$^{4+}$ (1 mol%) has two strong absorption bands at about 365 nm and 485 nm, which originate from $^4A_{2g}$ \rightarrow $^4T_{1g}$ and $^4A_{2g}$ \rightarrow $^4T_{2g}$ spin-allowed transitions of Mn$^{4+}$ ions in the BaNbF$_7$ host lattice, as shown in Fig. 6a and b. Therefore, this phosphor can be effectively excited by blue InGaN chips.

3.3. Morphology and composition analysis

The composition of the as-prepared BaNbF$_7$:Mn$^{4+}$ was investigated by EDX and the corresponding results are shown in Fig. 5a. The elements of Ba, Nb, F and Mn can be easily recognized and the atom ratios of Ba, Nb, and F are about 17.60%, 12.14% and 70.26% respectively, which is close to the ratio of 1 : 1 : 7 in BaNbF$_7$. The SEM image of BaNbF$_7$:Mn$^{4+}$ (1.0 mol%) and the relevant energy dispersive X-ray (EDX) mapping results are shown in Fig. 5b. The Ba, Nb, F and Mn EDS mapping of the selected area of the sample indicates that Mn$^{4+}$ ions are homogeneously dispersed in the host lattice.

3.4. Luminescence properties and crystal field analyses

The energy level of 3d4 ions was calculated by the Tanabe and Sugano theory.33 The Mn$^{4+}$ T–S energy-level and configurational coordinate diagram of fluoride hosts are depicted in Fig. 6a and b. The luminescence spectrum of Mn$^{4+}$ ions is highly influenced by the distorted [NbF$_7$]$^{2-}$ polyhedron environment. According to the peak energy at 298 K for the 2E_g \rightarrow $^4A_{2g}$ transition of Mn$^{4+}$ (15 873 cm$^{-1}$), the Racah parameter C is evaluated by the following equation:34

$$E \left(^2E_g \rightarrow ^4A_{2g} \right) \approx \frac{3.05C}{B} - \frac{1.8B}{D_q} + 7.9$$

Fig. 4 (a) Calculated energy band structure and (b) the total and partial density of states of BaNbF$_7$. (c) DRS of the BaNbF$_7$ and Mn$^{4+}$-doped BaNbF$_7$. The inset shows the extrapolation of the band gap energy of BaNbF$_7$.

Fig. 5 EDS spectra (a) and typical SEM image and the EDS mapping of the selected area (b) of the BaNbF$_7$:Mn$^{4+}$ (1.0 mol%).

Fig. 6 (a) The Tanabe–Sugano energy-level diagram of Mn$^{4+}$ ions. (b) Configurational coordinate diagram for Mn$^{4+}$ ions in fluoride hosts. (c) Typical PLE and PL spectra of the red phosphor BaNbF$_7$:Mn$^{4+}$.
The values of D_q, B and C for BaNbF$_7$:Mn$^{4+}$ are 2105.3, 568.1 and 3838.7 cm$^{-1}$ respectively. Therefore, the ratio of D_q/B is about 3.71. A good red phosphor needs to have strong absorption characteristics in the blue region and the effective emission of red light within 650 nm for blue excited WLEDs. The typical PLE and PL spectra of the red phosphor BaNbF$_7$: Mn$^{4+}$ obtained at room temperature are presented in Fig. 6c. Two intense excitation bands in PLE spectra located at 368 nm (27 174 cm$^{-1}$) and 475 nm (21 053 cm$^{-1}$) can be observed when monitored at 630 nm. Under 475 nm excitation, the phosphor exhibits intense red emission, which can be ascribed to the spin-forbidden $^2E_g \rightarrow ^4A_{2g}$ transition of Mn$^{4+}$. The corresponding color coordinates of BaNbF$_7$:Mn$^{4+}$ were calculated as $x = 0.689$ and $y = 0.311$ based on the emission spectra. The CIE chromaticity diagram of BaNbF$_7$:Mn$^{4+}$ is shown in Fig. S2.†

The room temperature PL spectra of BaNbF$_7$:Mn$^{4+}$ red phosphors with various Mn$^{4+}$ concentrations are presented in Fig. 7. As shown in Fig. 7a, the XRD patterns indicate that all the phosphors with Mn$^{4+}$ molar concentrations ranging from 0.5% to 8.0% are all pure phases. The PL spectra of BaNbF$_7$: Mn$^{4+}$ with different doping concentrations excited under 475 nm are shown in Fig. 7b. The relationship between normalized integrated PL intensity and Mn$^{4+}$ doping concentration is shown in the inset of Fig. 7b. The PL intensity increases firstly and reaches a maximum at a doping concentration of 4.0 mol%, with a continuous increase of Mn$^{4+}$, and the value gradually decreases due to the concentration quenching.

The phonon–electron interaction is directly related to temperature. At low temperatures, the electrons prefer to distribute in the zero-vibration excited state. When the excited electrons return to the ground state, ZPL and Stokes emissions are released. At high temperatures, electrons prefer to occupy the upper vibrational states which leads to additional anti-Stokes radiation.15 Fig. 8 presents the temperature-dependent PL spectra of BaNbF$_7$:Mn$^{4+}$ (77–297 K). There is a slight PL band red-shift when increasing the temperature. It can be explained by the Varshni equation, as shown in Fig. E1 (ESI†).35 Similar ZPL red-shifts were also observed in the oxyfluoride red phosphor Na$_2$WO$_2$F$_4$:Mn$^{4+}$.27

The application of high pressure is an efficient way to change the crystal-field strength and modify the doping site symmetry. In 2015, A. Lazarowska et al. reported the pressure effects on the luminescence properties of the red-emitting phosphor K$_2$SiF$_6$:Mn$^{4+}$. The PL spectrum of K$_2$SiF$_6$:Mn$^{4+}$ consists of several lines attributed to phonon repetitions of the $^2E_g \rightarrow ^4A_{2g}$ transition and does not contain the ZPL at ambient pressure. When the pressure increased above 9 kbar, the ZPL suddenly appeared, and it remained even after the pressure was removed. They ascribed these changes to pressure-induced local structure transformation of the MnF$_6^{2-}$ octahedron. For the Mn$^{4+}$-doped K$_2$SiF$_6$ and BaTiF$_6$ octahedron structure, the ZPL emission is dependent on the Mn$^{4+}$ ion local symmetry. Any effect that breaks the symmetry under pressure may activate the ZPL. In this work, we tried high pressure to change the crystal-field strength and modify the (Nb/MnF$_7$) polyhedron symmetry, and then studied the effect of local symmetry on the luminescence of ZPL emission. The red emission of Mn$^{4+}$-doped BaNbF$_7$ under various pressures is plotted in Fig. 9. When pressure increases, the emission spectra gradually red shift to a longer wavelength from 631.6 nm at 1.6 GPa to 644.2 nm at 20.6 GPa. These red shifts may arise from the decrease of the interelectronic repulsion and the nephelauxetic

![Fig. 7](image7.png)

Fig. 7 (a) XRD patterns with different Mn$^{4+}$ concentrations of BaNbF$_7$:Mn$^{4+}$. (b) PL spectra of BaNbF$_7$:Mn$^{4+}$ with different doping concentrations. The inset shows the integrating intensity with different Mn$^{4+}$ concentrations.

![Fig. 8](image8.png)

Fig. 8 The temperature-dependent PL spectra of BaNbF$_7$:Mn$^{4+}$ (77–297 K) under 475 nm excitation.
effect which are related to the enhancement of (Nb/Mn–F) bond covalency. Compared with K2SiF6 and BaTiF6 octahedra, the BaNbF7 decahedron has a lower symmetry of C3v. When changing the ambient-pressure, C3v group symmetry is likely to rise to a higher point group.

Raman spectroscopy was used to further understand the BaNbF7:Mn4+ structural evolution under different pressures. Fig. 10 presents the Raman spectra up to 10.7 GPa at room temperature by using silicone oil as the PTM. At 1.6 GPa, five peaks at wavenumbers 306, 390, 650, 918 and 975 cm⁻¹ are observed. When the pressure increases, the vibration peaks shift to a higher wavenumber due to the increase of (Nb/Mn)–F bonding strength. When the pressure reaches 7.1 GPa, the 306 cm⁻¹ and 975 cm⁻¹ peaks disappear. The number of vibration modes reduced which means that the structure symmetry increased. This Raman result followed the spectrum change. When the pressure increases, BaNbF7:Mn4+ rises to a higher symmetry which keeps the ZPL emission not significantly decreased under high pressure. 37

3.5. Warm LED application

To further evaluate the luminescence characteristics effectively, we fabricated a warm WLED using a blue LED chip combined with the commercially available yellow YAG:Ce3+ phosphor and as-synthesized BaNbF7:Mn4+ red phosphor. The EL spectra of the warm WLED were recorded under drive currents between 20 and 300 mA as shown in Fig. 11(a). The full spectrum is composed of the three parts. The band shape and peak positions of each part remain constant when the current increases from 20 mA to 350 mA. Besides, the emission intensity increases as the drive current increases. Fig. 11(b) shows the CIE coordinate diagram of the WLED with the color point lying on the black body locus under a drive current of 20 mA. The values of Ra and CCT are 81.2 and 3715 K respectively, indicating the potential of the BaNbF7:Mn4+ phosphor as a red component for WLED application.

4. Conclusion

In summary, a new red fluoride phosphor BaNbF7:Mn4+ was synthesized by a mild and controllable co-precipitation method. Single-crystal X-ray diffraction reveals that BaNbF7 has a cubic unit cell of a = 9.8855(16) Å and Z = 8 with the Pa3 space group (No. 205). Mn4+ experiences a strong crystal field strength in BaNbF7, with Dq = 2026.9 cm⁻¹, B = 562.1 cm⁻¹, and C = 3838.7 cm⁻¹. Under blue light excitation, Mn4+ activated BaNbF7 exhibits a strong ZPL emission at ~630 nm, which originated from the highly distorted Mn4+ polyhedron coordination environment. Under different ambient-pressure conditions, the C3v symmetry of [NbF7]2− is likely to rise to a higher point group. But it didn’t cause the ZPL luminescence to significantly change. A WLED device was fabricated with the commercial yellow phosphor YAG:Ce3+, the as-synthesized red
phosphor BaNbF$_7$:Mn$^{4+}$ and blue InGaN chips. The color rendering index (CRI, $R_a = 81.2$) and corresponding color temperature (CCT = 3715 K) indicate the potential of the BaNbF$_7$:Mn$^{4+}$ phosphor as a red component for warm WLED application.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This project was funded by the National Natural Science Foundation of China (51972203, 51672167, and 51272151), the Natural Science Foundation of Shaanxi Province (2018JQ5044), and Fundamental Research Funds for the Central Universities (GK202003027).

References

30 G. M. Sheldrick, SHELXS97, Program for crystal structure solution, Germany, 1997.

