Metallization of Quantum Material GaTa₄Se₈ at High Pressure

Hongshan Deng,* Jianbo Zhang, Min Yong Jeong, Dong Wang, Qiyang Hu, Shuai Zhang, Raimundas Sereika, Takeshi Nakagawa, Bijuan Chen, Xia Yin, Hong Xiao, Xinguo Hong, Jichang Ren, Myung Joon Han,* Jun Chang,* Hongming Weng, Yang Ding,* Hai-Qing Lin, and Ho-kwang Mao

ABSTRACT: Pressure is a unique thermodynamic variable to explore the phase competitions and novel phases inaccessible at ambient conditions. The resistive switching material GaTa₄Se₈ displays several quantum phases under pressure, such as a J_{\text{eff}} = 3/2 Mott insulator, a correlated quantum magnetic metal, and d-wave topological superconductivity, which has recently drawn considerable interest. Using high-pressure Raman spectroscopy, X-ray diffraction, extended X-ray absorption, transport measurements, and theoretical calculations, we reveal a complex phase diagram for GaTa₄Se₈ at pressures exceeding 50 GPa. In this previously unattained pressure regime, GaTa₄Se₈ ranges from a Mott insulator to a metallic phase and exhibits superconducting phases. In contrast to previous studies, we unveil a hidden correlation between the structural distortion and band gap prior to the insulator-to-metal transition, and the metallic phase shows superconductivity with structural and magnetic properties that are distinctive from the lower-pressure phase. These discoveries highlight that GaTa₄Se₈ is a unique material to probe novel quantum phases from a structural, metallicity, magnetism, and superconductivity perspective.

The quantum molecular GaTa₄Se₈ (GTS) is a candidate for resistive switching materials and memory devices, and it exhibits successive transitions from Mott insulator to metal and metal to superconductor¹ at high pressure. In addition to its unique magnetic and transport properties at ambient conditions, the phases that can arise in this material include intriguing topological d-wave superconductivity,² correlated J_{\text{eff}} = 3/2 metal,³ spin-freezing superconductivity,⁴ and a multipolar magnetic phase.⁵ However, the vast, exciting possibilities remain largely unexplored, especially in the high-pressure regime.

GTS is commonly described as a deficient spinel with a symmetry of F43m. Tantalum atoms are shifted off the center of the Se octahedral cage, forming tetrahedral Ta₄Se₈ (or Ta₄) clusters with the intracluster Ta−Ta distances of <3 Å and the intercluster Ta−Ta distances of >4 Å. It remains in a cubic insulating phase to the lowest temperatures.¹,⁵,⁶ Previous high-pressure studies on GTS were carried out up to ~26 GPa.¹ They revealed that GTS experienced an insulator-to-metal transition (IMT) at 17 GPa from a resistance measurement on polycrystalline samples,¹ 6 GPa from optical conductivity experiments on single crystals,⁷ and 3.5 GPa from a resistance measurement on single crystals.⁸ As no symmetry-breaking was reported during the IMT, this pressure-induced IMT has been regarded for decades as a Mott transition primarily driven by the electron−electron interaction.¹,⁵−¹⁴ In addition to the considerable divergence in reported IMT transition pressures, recent experiments⁴ and theoretical results¹⁵ also debate that possible structural changes are concurring with the IMT, which compel us to investigate the role of the GTS crystalline structures during the IMT transition and further explore the new quantum states in the higher-pressure regime.

To study how GTS’s structure evolves with the IMT, a question still under considerable debate,⁸¹⁰¹¹¹¹⁴ we have integrated the electrical resistance technique with Raman spectroscopy at high pressure for the simultaneous measurements of resistance and structural properties, which can effectively avoid the errors caused by different experimental conditions in individual measurements. Moreover, we recorded the pressure values every ~20 K to disentangle the temperature effects on pressure (SM 1).

Figure 1a–h displays the results of the resistance measurements. From 0.8/5.0 GPa (300/7 K) (the term of "300/7 K" means the pressure of 0.8 GPa at 300 K increases to 5.0 GPa as temperature decreases to 7 K; this notation of 300/7 K is omitted at other pressures for simplicity) to 4.5/10.2 GPa, the resistance exhibits a temperature-dependent insulating behavior. From 4.5/10.2 GPa to 18.2/25.3 GPa, the resistance value drops by about 4 orders of magnitude. Though this phase is metal-like, having a much lower resistance than the Mott...
insulating phase, it is still in an insulating phase due to its
temperature dependence, showing an upturn at lower temper-
atures. The electronic state of the material under 18.2 /25.3
GPa appears to exhibit MIT-like behavior, which is the
likelihood of phase separation or a possible magnetic
"impurity" effect in this intermediate regime.

When the pressure reaches above 22.0/29.6 GPa, GTS turns
into a metallic phase, in which the resistance decreases
monotonically as the temperature is lowered (Figure 1g).
Because the IMT pressure ($P_c$) increases from 22.0 GPa (300 K)
to 29.6 GPa (7 K), there is no single pressure value
corresponding to each $R - T$ curve due to the entanglement of
$T$ and pressure (SM 2). To solve this problem, the
resistance data were selected with the same pressure from the
two-dimensional map of $R(P, T)$ (SM 1), and the activation
gap $\Delta$ (also equal to the band gap) was determined for each
selected pressure point by
fitting the data with the equation

$$\ln R(T) = \frac{\Delta}{2k_B T}$$

(where $k_B$ is the Boltzmann constant) (SM 1).
It is noted that $\sqrt{\Delta}$ shows linearity with pressure, and it was
determined the IMT $P_c(IMT)$ is $\sim 32.4$ ($\pm 0.4$) GPa at 0 K when
$\Delta$ becomes 0 eV. In contrast, the conventional data analysis
gives an IMT $P_c$ lower than the $P_c$ determined from our
new method (SM 2).

Accordingly, previous studies' inconsistency of the reported
$P_c$ is probably due to the values measured at room
$T$, which are not the actual IMT $P_c$ values (SM 2).
Therefore, the comparison of these $P_c$ values is not
meaningful. Also, single crystals usually have anisotropic
resistance$^{16-18}$ so that the IMT could occur at lower pressure
along specific directions in single crystals than polycrystalline
samples. This could be another source for the reported
$P_c$ values' inconsistency between single-crystal samples and
polycrystalline samples.$^{19-22}$

Parallel to the resistance measurements, the Raman spectra
are simultaneously collected from the same sample at
approximately every 50 K to monitor the possible change of
structures. The Raman spectra are shown in Figure 1i–l, while
more data are shown in (SM 3). The most notable change in
Raman spectra is the splitting of the main peak into two peaks,
i.e., peak 1 ($\sim 250$ cm$^{-1}$) and peak 2 ($\sim 200$ cm$^{-1}$),
immediately above the ambient pressure, indicating a structural
distortion (Figure 1i–l). Peak 1 corresponds to the vibration
mode of the Ta$_4$Se$_4$ cluster.$^1$ The continuous softening of peak

![Figure 1](https://doi.org/10.1021/acs.jpclett.1c01069)

**Figure 1.** Results from electrical resistance and Raman measurements on GaTa$_4$Se$_8$ (GTS) at high pressure. Plots (a–h) show an IMT appears at
22.0/29.6 GPa (300/7 K). (i–l) The results of the Raman spectra were collected simultaneously with electrical resistance from 1 bar to 63.5 GPa
and 300 to 7 K. The Raman peak at 200–250 cm$^{-1}$ splits into peaks 1 and 2 immediately above ambient pressure. In contrast, peak 2 continuously
softens with compression prior to the first-order structure transition occurring at 22.6/32.7 GPa. (m) The plot of linear fitting $\sqrt{\Delta}$ (in red) to
pressure shows that $\Delta$ becomes zero at $\sim 32.4$ ($\pm 0.4$) GPa, yielding the value of $P_c(IMT)$ at $T = 0$ K. In addition, the result (in blue) determined
from the $P-T$ entangled data (pressure is only measured at 300 K) is also added for comparison. (n) The plot of linearly fitting $C$ to pressure
yields the $P_c(s) = 32.50$ ($\pm 1.2$) GPa. (o) The correlation between $\Delta$ and $h\omega_0$ appears with a ratio of $\Delta/h\omega_0 = 15.6$. 

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL

Letter

https://doi.org/10.1021/acs.jpclett.1c01069


5602
2 suggests the vibration mode of the distorted Ta₄Se₄ cluster becomes increasingly unstable at high pressure. However, such a distortion is too small to be distinguished in powder (SM 4) and single-crystal X-ray diffraction (XRD) (SM 5) and can only be detected in Raman spectra and extended X-ray absorption fine structure (EXAFS) spectra (see SM 4). Eventually, the Raman spectra show dramatic changes at 22.6/32.7 GPa, suggesting a first-order structure transition occurs. To conclusively and accurately determine if the structure transitions concur with IMT, we need to determine the structure transition pressure \( p_{c(IMT)} \) at 0 K and compare it with \( p_{c(IMT)} \) at 0 K.

To this end, the \( p_{c(IMT)} \) at 0 K using \( \frac{\partial\omega}{\partial p} \) as a criterion (where \( \omega \) is the frequency of peak 2) is determined, assuming the softening of peak 2 is a precursor of the first-order structure transition and ceases at the structure transition critical pressure. Similar to the determination of \( \Delta \), a two-dimensional map of \( \omega(p,T) \) (peak 2) is constructed, and the \( \omega \) values obtained at the same pressure are selected. By fitting \( \omega \) to temperature with the equation \( \omega = C^*T + \omega_0 \) (where \( \omega_0 \) is the position of peak 2 at 0 K), \( C \) and \( \omega_0 \) for each selected pressure point (SM 3) are obtained. \( \sqrt{C} \) shows linearity with pressure, and it was determined the \( p_{c(IMT)} \) is \( \sim 32.5 \) (±1.2) GPa at 0 K when \( \frac{\partial \omega}{\partial p} \) becomes 0 (\( \omega \) also becomes 0), as shown in Figure 1n. Within the uncertainties, \( p_{c(IMT)} \) appears identical to \( p_{c(IMT)} \); it can thereby be concluded that the IMT and the first-order structure transition indeed concur at \( \sim 32.4 \) GPa and 0 K. More intriguingly, prior to the IMT and the first-order structure transition occurring, \( \omega_0 \) and \( \Delta \) show persisting linearity with a ratio of \( \frac{\Delta \omega}{\Delta p} = 15.6 \) (Figure 1o). This result provides compelling evidence of a correlation between the structural distortion and band gap, which was not elucidated by previous studies.

These findings suggest that the current understanding of IMT in the GTS material requires an update: the role of pressure is not only to increase the intercluster hopping and thus to reduce the \( U/J \) value of the Hubbard model but also to expand the bandwidth by removing part of the orbital degeneracy to assist the Mott transition, being similar to the well-known Mott—Peierls type IMT in VO₂.\(^{15,16} \) However, the IMT in VO₂ results in a metallic phase with a higher symmetry than its insulating phase. In contrast, the IMT in GTS leads to a metallic phase with a lower symmetry than its insulating phase, implying that the driving force of the IMTs in these two material systems may be different, so further experimental and theoretical investigations are required.

To further characterize the metallic phase’s crystal structure after the IMT, a separate high-pressure powder X-ray diffraction experiment on polycrystalline GTS samples was performed. The results displayed in Figure 2a show no appreciable structural distortion could be identified from XRD patterns up to \( \sim 23.4 \) GPa at 300 K, consistent with previous reports.\(^{1,6} \) A new peak appears at \( P = 23.4 \) GPa (300 K; indicated by an arrow) to evidence the emergence of a first-order structure transition. The transition pressure is roughly consistent with the IMT pressure of 22.0 GPa at 300 K. The structure determination and refinement based on the diffraction patterns indicate the new metallic phase has a \( C2 \) symmetry that inherits the similar Ta₄Se₄ clusters’ basic molecular unit and the cubic phase’s topological configurations (as shown in Figure 2c,d). However, it has a reduced intercluster distance and a more distorted Ta₄Se₄ cluster (see SM 6). This symmetry change in the crystal structure has not been reported in previous studies.\(^{1,5−7} \)

Additional density functional theory (DFT) calculations were done to investigate the new metallic phase’s electronic structure with the same schemes applied in refs 12 and 28. Figure 2e,f shows the band dispersion and the density of states (DOS), respectively, calculated with the structure obtained experimentally at \( P \approx 50.2 \) GPa. GTS exhibits a metallic character, and the electronic structure does not significantly change by including SOC. Moreover, the orbital orbitals are not well-defined, and the projection onto the \( J_{\text{eff}} \) state fails, implying that GTS’s molecular nature is no longer retained; we
also find that the metal phase is nonmagnetic, as its ground state is far from the magnetic stability (SM 7). Therefore, the metal phase is different from the low-pressure insulating phase for which the well-defined $J_{\text{eff}} = 3/2$ moment is revealed by previous RIXS experiment, and DFT + U and DFT + DMFT calculations.2,12,28

In the study of IMT, the temperature can only be lowered to 6−7 K, not enough to study the superconductivity in GTS that is reported to start near 5 K.1 Thus, the second round of resistance measurements was performed using a physical property measurement system (PPMS) to extend the study of superconductivity up to 50.3 GPa. In this study, the temperature could be lowered to ∼2 K, and the results are displayed in Figure 3a−e. The superconductivity appears around 18.0/25.0 GPa (300/2 K) (SM 8) with a $T_c$ of ∼3.95 K in the semiconductor phase. This result is roughly consistent with the previous report.4 Moreover, it again indicates that GTS turns into a complete metallic phase at ∼22.1/29.1 GPa (300/2 K), consistent with the results from first-round measurements. The superconductivity is maintained at 50.3/57.3 GPa (300/2 K) (the maximum pressure achieved). $T_c$ increases to 5.6 K once GTS enters a metallic phase at ∼19/29 GPa (300/2 K) and decreases slightly with pressure up to 50.3/57.3 GPa (300/2 K). There is no indication of a strong departure from Fermi liquid behavior, since the parameter $n$ remains at 2 in the equation $R = R_0 + a T^n$, below 70 K (Figure 3b). The critical field is about 3 T at 19.9/26.6 GPa with a $T_c$ of ∼4 K (Figure 3d), but it becomes more than 9 T at ∼50.3/57.3 GPa (300/2 K) (Figure 3e).

A previous theoretical study2 suggests topological d-wave superconductivity based on the molecular $J_{\text{eff}} = 3/2$ band structure in the relatively low-pressure regime. The calculation shows that the electronic band structure’s molecular nature breaks down under high enough pressure, and the material turns out to be a usual atomic solid. As discussed above and supported by the transport data, this high-pressure phase is close to Fermi liquid. Thus, the situation seems to imply the possibility that there is a conventional Bardeen−Cooper−Schrieffer (BCS)-type superconductivity residing in a high-pressure metallic phase, which is distinctive from that at lower pressure. This conjecture seems consistent with the fact that the observed superconductivity shows a maximum $T_c$ at IMT, which does not exhibit the usual pressure-dependent dome shape but extends up to the highest pressure without a rapidly decreasing $T_c$. This possibility deserves further investigation.

In conclusion, our results establish GTS as a unique material system in which the Mott insulator, correlated $J_{\text{eff}} = 3/2$ metal, and conventional metal phase successively arise as a function of pressure. To summarize, Figure 4a displays the constructed $P−T$ phase diagram. It is observed that the Mott insulator-to-metal transition concurs with a symmetry-lowering structural transition from cubic to monoclinic, renewing our understanding of IMT in this material at high pressure. The superconducting state appears in the insulating state and close to Fermi liquid metallic state up to 50.3 GPa, which is possibly

![Figure 3](https://example.com/figure3.png)  
**Figure 3.** Superconductivity and pressure−temperature phase diagram of GaTa$_4$Se$_8$. (a) The high-pressure resistance measurements of GTS up to 50.3/57.3 GPa (300/2 K). (b) The Fermi liquid fitting of resistance vs $T^2$ from 10 to 70 K at 50.3/57.3 GPa (300/2 K). (c) The plot of superconductivity is measured at high pressure. (d,e) shows the temperature dependence of resistance under different magnetic fields up to 3 T at 19.9/26.9 GPa (300/2 K) and up to 9 T at 39.7/46.7 GPa (300/2 K), respectively.

![Figure 4](https://example.com/figure4.png)  
**Figure 4.** Pressure−temperature phase diagram of GaTa$_4$Se$_8$. (a) The phase diagram of GTS. Transport measurements and Raman measurements define the phase boundary. (b) Superconductivity $T_c$ evolution with the pressure of GTS. The black line is reported by Abd-Elmeguid et al. The red line is obtained from Figure 3b.
a BCS-type superconductor distinct from the d-wave type one reported in the low-pressure regime.

## EXPERIMENTAL SECTION

**Sample Preparation and Characterization.** Polycrystalline and single-crystal samples of GTS were prepared by the selenium transport method as described in ref 6. The GTS powders were then placed in an evacuated silica tube with a slight excess of, heated at 950 °C for 24 h, and then slowly cooled down (2 °C h⁻¹) to room temperature to avoid the vacancy of elemental selenium. The sample was characterized by X-ray diffraction at HPCAT 16-BM-D, Advanced Photon Source, Argonne National Lab. Powder diffraction patterns were well-indexed using the previously reported crystal structural data.¹,⁶,⁷

**High-Pressure Electrical Measurements.** The electronic transport properties under high pressure and low temperature were investigated via the van der Pauw electrical conductivity method in a CuBe alloy symmetric diamond anvil cell (DAC). The pressure was generated by a pair of diamonds with a 400 μm diameter culet. A gasket made of stainless steel was pressed, and a hole was drilled into the center of the gasket with a diameter of the diamond culet. A cubic boron nitride (c-BN)-epoxy insulation layer was prepared to protect the electrode leads from the metallic gasket. Finally, a hole with a 280 μm diameter was drilled in the center of the c-BN gasket. The NaCl powder was used as the pressure-transmitting medium. Four platinum strips were arranged to contact the sample in the chamber. The first-round experiments at different pressure–temperature conditions were performed using a laboratory-designed (with optical window) electronic transport system where a Keithley 6221 current source, 2182A nanovolt meter, and 7001 switch device were used as the current supply, voltmeter, and voltage/current switcher, respectively. The pressure was measured via the ruby fluorescence method at every ~20 K (from 5 to 300 K). The second-round high-pressure electrical transport experiments were conducted using the Quantum Design physical property measurement system by 23 mm-type CuBe cells.

**High-Pressure Raman Spectroscopy.** Raman spectra were recorded in backscattering geometry using a microspectrometer with the symmetric cell. The DAC had a pair of ultralow fluorine type II diamonds with a 300 μm culet size and was set in a microscopy cryostat system. A CuBe alloy symmetric diamond anvil cell (DAC) with a T301 steel gasket. The silicon diode sensor bought from Cryogenic Control Systems, Inc. was used for 7–300 K temperature calibration. A micro-Raman system (Renishaw, UK) with a 533 nm laser excitation was applied to obtain the sample’s Raman spectra. A grating of 2400 grooves/mm was employed throughout the experiment, and the laser beam spot was about 20–30 μm. The ruby fluorescence was used to calibrate the pressure with Ne as the pressure medium.

**High-Pressure X-ray Powder Diffraction.** The pressure dependence of the lattice constants of GTS powder samples was measured at room temperature up to about 8 GPa by angular dispersive X-ray diffraction (ADXRD) at HPCAT 16-BM-D using the symmetric DAC with a T301 stainless steel gasket. Ne was loaded as the pressure-transmitting medium to maintain good hydrostatic pressure. The incident X-ray beam size was ~10 μm with an energy of 40 keV. The flow cryostat was applied to conduct the low-temperature diffraction down to 30 K. A Mar345 CCD was used as the detector. An online ruby system was employed to measure the ruby fluorescence signal for pressure determination. The imaged diffraction was integrated using the DIOPTAS software to acquire the diffraction intensity vs 2θ data sets. Crystallographic parameters and structure simulation were analyzed by Rietveld full-profile refinement using the General Structure Analysis System (GSAS) program.³⁰

**High-Pressure X-ray Single-Crystal Diffraction.** The high-pressure X-ray single-crystal diffraction measurements were carried out on GTS up to 30 GPa at room temperature using the Bruker D8 Quest diffractometer equipped with Mo Kα radiation. Data were collected with an Sc-type cell with an X-ray window opening of 20 degrees. The data reduction, structure solution,³² and refinement³³ were conducted with program APEX3.

**First-Principles Calculations.** The electronic structure calculations based on density functional theory (DFT) were carried out using the “OpenMX” code, which is based on the linear combination of pseudostatitical orbitals.³⁴ Local density approximation (LDA)³⁵,³⁶ was used for the exchange-correlation functional. A cutoff energy of 400 Ry and a 12 × 12 × 12 Monkhorst-pack grid for momentum-space integration were adopted. The SOC was treated within the fully relativistic j-dependent pseudopotential and noncollinear scheme.³⁷ The primitive unit cell of the experimentally determined C2 monoclinic structure was used for our calculations.

## ASSOCIATED CONTENT

+ **Supporting Information**

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcl.1c01069.

Detailed disentangle method, entangle activation energy, low-pressure structure, single-crystal diffraction analysis, crystal structure details, metal phase details (PDF)

## AUTHOR INFORMATION

### Corresponding Authors

Hongshan Deng — Center for High Pressure Science and Technology Advanced Research, Beijing 100094, People’s Republic of China; orcid.org/0000-0002-6871-2739; Email: hongshan.deng@hpstar.ac.cn

Myung Joon Han — Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; orcid.org/0000-0002-8089-7991; Email: mj.han@kaist.ac.kr

Jun Chang — College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, People’s Republic of China; Email: junchang@snnu.edu.cn

Yang Ding — Center for High Pressure Science and Technology Advanced Research, Beijing 100094, People’s Republic of China; Email: yang.ding@hpstar.ac.cn

### Authors

Jianbo Zhang — Center for High Pressure Science and Technology Advanced Research, Beijing 100094, People’s Republic of China; orcid.org/0000-0002-8339-1099

Min Yong Jeong — Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea

Dong Wang — Center for High Pressure Science and Technology Advanced Research, Beijing 100094, People’s Republic of China; orcid.org/0000-0001-5004-9732
Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.jpcl.1c01069

Author Contributions
All authors have given approval to the final version of the manuscript.

Funding
Y.D. is grateful for support from the National Key Research and Development Program of China 2018YFA0305703, Science Challenge Project, No TZ2016001, and the National Natural Science Foundation of China (NSFC): U1930401, 11874075, M.Y.J. and M.J.H. were supported by the Basic Science Research Program (2018R1A2B2005204) by the Creative Materials Discovery Program through NRF (2018MD1A1058754) funded by the Ministry of Science and ICT (MSIT) of Korea and by the KAIST Grand Challenge 30 Project (KC30) in 2019 funded by the MSIT of Korea and KAIST. Q.H. is supported by the CAEP Research Project (CX20210048) a Tencent Xplorer prize.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We acknowledge sectors 16 BM-D of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science user facility operated by Argonne National Laboratory (ANL) that is supported by the U.S. DOE Award No. DE-AC02-06CH11357, and beamline U2A of the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. The electric transport and Raman spectroscopy measurements were performed at the Center for High-Pressure Science & Technology Advanced Research. The authors thank S. Tkachev for help with the gas loading at the Advanced Photon Source. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

REFERENCES
(11) Guiot, V.; Janod, E.; Corrabor, B.; Cario, L. Control of the electronic properties and resistive switching in the new series of Mott insulators GaTa$_5$Se$_8$Te$_{0.5}$ ($0 \leq y \leq 0.6$). Chem. Mater. 2011, 23 (10), 2611–2618.


