

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Modulating interfacial defects for dual-enhancing chromaticity and stability of cerium sulfide

Xuan Sun^{a,b}, Wei Dong^c, Chenjie Lou^b, Shuqin Chang^b, Ruiping Deng^c, Ran Pang^c, Guangcan Bai^d, Guoquan Liu^d, HPSTAR Chengyu Li^c, Hongjie Zhang^c, 1548-2022

^a Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University,

Hangzhou, 310018, China

^b Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China

^c Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Province, 130022, ChangChun, China

^d State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China

^e College of Materials Science and Engineering, Tianjin University, 300072, Tianjin, China

ARTICLE INFO

Keywords: Cerium sulfides Defect modulation Interfacial correlation Chromaticity Stability

ABSTRACT

To obtain rare earth sulfides with satisfied chromaticity and stability for diverse applications in the field of pigment, a harnessed synthetic molecular strategy for *in-situ* growth of CePO₄ as an interlayer between core Ce₂S₃ substrate and the outer SiO₂ layer is proposed. High-angle annular dark-field scanning transmission electron microscope (HAADF-STEM), electron paramagnetic resonance (EPR), and Raman analysis reveal that the transition layer CePO₄ significantly reduces the lattice spacing differences and reduces the oxygen activity on the interface, resulting in excellent chromaticity ($L^* = 51.9$, $a^* = 45.0$, $b^* = 30.0$) and stability for γ -Ce₂S₃@Ce-PO₄@SiO₂. These insights will advance the fundamental knowledge of core-shell crystal engineering and enable new ways to promote the application of rare earth sulfides.

1. Introduction

Inorganic pigments have attracted intensive attention from both academic research and potential industrial application because of their competitive stability properties. However, the compounds of red inorganic pigments were usually made of toxic transition metal, such as cadmium selenide, cadmium sulphoselenides, and palladium chromate, which would release toxic ions under acid-base environment and photothermal effect, further threatening human health and the natural environment [1–5]. Alternatively, γ -Ce₂S₃, one of rare earth sulfides, could potentially serve as a coloring pigment owing to its favorable brightness and non-toxicity properties. However, the presence of vacancies on the cationic sublattice and the oxophilic nature of Ce³⁺ in γ -Ce₂S₃ result in its poor stability, being limited from wide application, especially when the temperature exceeds 300 °C [6].

To improve the stability of pristine γ -Ce₂S₃, the strategy of construction of core-shell chemical architecture was employed to prevent or weaken γ -Ce₂S₃ oxidation at high temperature [7–9]. For instance, an outer ZnO layer was introduced to improve the stability of γ -Ce₂S₃ at high temperature. The stability has been improved by the aid of the ZnO layer with the decreasing in chromaticity properties [2]. Similarly, the highly condensed c-SiO₂ was coated onto γ -Ce₂S₃ pigments to effectively protect γ -Ce₂S₃ from oxidation at raised temperatures up to 883 °C, while *a** values decreased [10]. In short, the improved stability at the expense of chromaticity was still failed to meet the application standard, and the further research for achieving both enhanced stability and chromaticity were urgently needed. Meanwhile, very limited information is available on the precise nature of the core-shell interface and the way influencing the spectra. The possible lattice defects or spacing mismatching at the interface may creative between the active core and the coating layer, which would cause potential spectral energy loss and further result in negative impact on chromaticity [3]. Therefore, in-depth understanding of the effect of the interface on the performance and the development of an appropriate synthetic strategy was vitally in demand.

In this work, a modulating layer CePO₄ was introduced between the core γ -Ce₂S₃ and the coating SiO₂ layer to reduce the lattice spacing

https://doi.org/10.1016/j.jssc.2022.123640

Received 6 August 2022; Received in revised form 20 September 2022; Accepted 30 September 2022 Available online 5 October 2022 0022-4596/© 2022 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: fujipeng@cjlu.edu.cn (J. Fu), mingxue.tang@hpstar.ac.cn (M. Tang).

mismatch and the defects, aiming at improving both stability and chromaticity of γ -Ce₂S₃. The performances of bilayer-shelled γ -Ce₂S₃@Ce-PO₄@SiO₂ were fully characterized, and the outstanding advantages were demonstrated compared with that of single-layer coated structure and pristine. High resolution TEM and electron paramagnetic resonance (EPR) were employed to probe the local defects and interfacial structures from an atomic-scale perspective. The structure-activity mechanism related to double coating structure provides an efficient strategy for interfacial modulation, which is crucial for applications of rare earth sulfides.

2. Experimental

2.1. Preparation of γ -Ce₂S₃

All precursors are AR pure supplied by Macklin (Shanghai, China). Typically, the mixture of Ce₂(CO₃)₃·xH₂O, Na₂CO₃, and AlF₃ with a molar ratio of 20:0.3:0.7 was fully grounded in an agate mortar and prepared by using solid-state reaction [11]. Excess sulfur powder (molar ratio of Ce:S = 1:4) with the obtained mixture was added into a cylindrical crucible with carbon particles on the bottom layer. Then, the power was placed in a furnace calcined at 950 °C for 2 h, followed by ball milling for an hour to obtain the γ -Ce₂S₃.

2.2. Preparation of γ -Ce₂S₃@SiO₂

0.02 g Polyvinyl pyrrolidone (PVP), 2 mL of ammonia water, and γ -Ce₂S₃ were successively mixed in the 40 mL anhydrous ethanol. Meanwhile, 0.4 mL ethyl orthosilicate was added and stirred for 2 h at room temperature. Then, they were filtered and washed with deionized water and ethanol several times before drying at 120 °C.

2.3. Preparation of γ -Ce₂S₃@CePO₄

 γ -Ce₂S₃, Zn(H₂PO₄)₂, sodium citrate with a certain molar ratio of 300: 16: 5 were added in the 50 mL deionized water and stirred for 2 h at room temperature. The products were washed with distilled water and ethanol several times with proper drying afterwards.

2.4. Preparation of γ -Ce₂S₃@CePO₄@SiO₂

The γ -Ce₂S₃@CePO₄ was dispersed in the 40 mL anhydrous ethanol. 0.02 g polyvinyl pyrrolidone (PVP) and 2 mL of ammonia water were added successively. Meanwhile, 0.4 mL ethyl orthosilicate was added and stirred for 2 h. Then, the as-prepared sample was obtained by filtration, washed with deionized water and ethanol several times, followed by drying at 120 °C.

2.5. Characterizations

X-ray diffraction (XRD) data for all samples were collected from a diffractometer (D2 PHASER, Bruker, Germany) with Cu Ka radiation source (30 kV, 10 mA, λ = 0.15418 nm) which were scanned from 10° to 70° at a scanning rate of $10^\circ/min.$ The qualitative analysis of the microstructure and elements of the sample was analyzed by scanning electron microscope (SEM) with an acceleration voltage of 10 kV (SU8010, Hitachi, Japan). The samples were characterized by Fourier infrared spectrometer (NicoletiS50, Thermo Fisher Scientific, American) in the range of 400–2000 cm^{-1} at a scanning rate of 0.153 cm/s. High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) and mapping were performed on a double monochromator and probe/image (Titan Themis 60-300 S/TEM, Thermo Fisher Scientific, American) equipped with an Energy Dispersive Spectrometer (EDS). Electron paramagnetic resonance (EPR) spectra were acquired from a spectrometer (JES-FA200, JEOL, Japan) at room temperature with modulation frequency 100 kHz. Diffuse reflectance spectrum was recorded on ultraviolet-visible-near-infrared spectrophotometer (UV-3600, Shimadzu, Japan), the sample was measured with a high-resolution 0.1 nm integrating sphere device and referenced to BaSO₄ for calibration from 400 nm to 700 nm at a speed of 1 nm/s. DSC experiments were conducted on a differential thermal analyzer (DTA 404 PC, Netzsch, Germany). The samples (10 mg) were heated from 30 $^{\circ}$ C to 700 $^{\circ}$ C at a heating rate of 10 $^{\circ}$ C min⁻¹ under the air atmosphere. Chemical composition and elemental states were detected by X-ray photoelectron spectrometer (ESCALAB 250, Thermo Scientific, USA) equipped with Al Ka radiation monochromatic source. Ramam spectra of samples were collected in the range of 200–800 $\rm cm^{-1}$ using a Ramam spectrometer (InVia-Reflex, Renishaw, UK) with an excitation wavelength of 785 nm and resolution of 1 cm⁻¹ at 100 mW laser power. Solid state nuclear magnetic resonance (NMR) measurements were performed on a Bruker 400 MHz spectrometer (AVANCE NEO, Bruker, Germany). The study materials were filled into 3.2 mm rotors and spun at a magic angle spinning (MAS) rate 14 kHz. Single pulse was used to polarize and record the signals.

3. Result and discussion

The fabrication process of γ -Ce₂S₃, γ -Ce₂S₃@SiO₂, γ -Ce₂S₃@CePO₄, y-Ce₂S₃@CePO₄@SiO₂ are demonstrated in Scheme 1, and their crystal structures were characterized by XRD as shown in Fig. 1a. The XRD peaks of y-Ce₂S₃ match well with the standard card PDF#75-1948 in cubic Th₃P₄ phase. After coating with the SiO₂ layer, the cubic phase was maintained for γ -Ce₂S₃@SiO₂. The amorphous nature of SiO₂, which was also confirmed by ²⁹Si NMR spectrum as shown in Fig. S1. The existence of CePO₄ was confirmed by extra small peaks appearing at 31.12°, 37.35°, and 52.68° for both γ -Ce₂S₃@CePO₄ and γ -Ce₂S₃@CePO₄@SiO₂. Small peaks at about 25.5° and 31.7° are observed for the Al₂O₃ impurity originated from the conversion of excess Al doping [12,13]. As shown in Fig. 1b, the γ-Ce₂S₃@CePO₄@SiO₂ contains P, Si, Ce, S, O, and C elements, where the S 2p signal was detected at 155.4 eV, and the peak near 133.8 eV is associated with SiO₂. In addition, the small peak near 133.8 eV that is associated with PO_4^{3-} . The C element of the referencing spectra at the binding energy of 284.6 eV was detected. The O 1s peak at 532.7 is contributed to the active surface oxygen (OH⁻). Interestingly, compared with other γ -Ce₂S₃-based composite materials, the O 1s peaks of $\gamma\text{-}Ce_2S_3@CePO_4@SiO_2$ shift to the higher binding energy as shown in Fig. S2a, indicating the generation of reactive oxygen species could be suppressed [14]. Similarly, compared with $\gamma\text{-}Ce_2S_3@CePO_4$, the P 2p peak is observed that shows positive shift in the binding energy of γ -Ce₂S₃@CePO₄@SiO₂ (Fig. S2b), because the interaction of the SiO₂ and CePO₄ interface promotes the movement of electrons, reducing the surface oxygen activity [15–17]. Furthermore, the Ce 3d signals of γ -Ce₂S₃ and γ -Ce₂S₃@CePO₄@SiO₂ were plotted in Fig. 1c. There are two characteristic peaks at 885.1 eV and 904.2 eV for Ce 3d_{5/2} and Ce 3d_{3/2} respectively, indicating the Ce in the γ -Ce₂S₃@CePO₄@SiO₂ still presents trivalent Ce³⁺ [18].

The morphology of γ -Ce₂S₃ and γ -Ce₂S₃ composite materials are shown in Fig. S3 by scanning electron microscopy (SEM). The particle diameter of the pristine γ -Ce₂S₃ is approximately 0.5–1.5 µm with irregular configuration and particle aggregation. After being coated with CePO₄ and/or SiO₂ shell, the particles with single shell show diameter of 1–3 µm, and the size of bilayer-shelled particles is 1.5–5 µm with good dispersion.

The composite structures were further verified by energy dispersive X-ray spectroscopy (EDS). As shown in Fig. 2a, SiO₂ layer is about 4 nm in thickness, and the intermediate CePO₄ layer is in the range of 10–20 nm, which are coated on the core γ -Ce₂S₃ that is observed as the dark and dense region. Ce, P, S, and Si elements are detected and distributed homogenously, which corresponding to SiO₂ layer (Green) and interlayer CePO₄ (Red) respectively from the sum of EDS maps (right-top image in Fig. 2a). The EDS elemental mappings of other γ -Ce₂S₃ composite materials are also supplied in Figs. S4–S6 for reference.

Scheme 1. Preparation process of γ -Ce₂S₃@SiO₂, γ -Ce₂S₃@CePO₄ and γ -Ce₂S₃@CePO₄@SiO₂. TEOS stands for tetraethoxysilane.

Fig. 1. (a) XRD patterns of γ -Ce₂S₃, γ -Ce₂S₃@SiO₂, γ -Ce₂S₃@CePO₄, γ -Ce₂S₃@CePO₄@SiO₂. (b) Full survey XPS spectrum of γ -Ce₂S₃@CePO₄@SiO₂. (c) XPS spectra of Ce 3d in γ -Ce₂S₃@CePO₄@SiO₂.

In Fig. 2b, it is observed Raman peaks at 403 cm⁻¹ and 455 cm⁻¹ are characteristic of γ -Ce₂S₃ [19]. As coated with SiO₂/CePO₄, the broad Raman band at 403 cm⁻¹ gradually disappeared. A huge enhancement in the main peak intensity with the increasing coating thickness, which is consistent with a gradual increase in Si–O, δ s (P–O) bond concentration during the coating layer growth. The Raman peaks of all samples are overlapped in the range of 400–500 cm⁻¹, which are divided into different peaks as shown in Fig. S7. The vibration peaks of Si–O chemical keys have a low wide Raman Peak around at 440 cm⁻¹ where the band appearing at near 400-460 cm⁻¹ are assigned to δ s (P–O) symmetrical bending mode [20,21]. The assignments of PO₄^{3–} band in CePO₄ are

complicated due to different structural state and chemical composition. For γ -Ce₂S₃@CePO₄@SiO₂, the different shell materials were confirmed by fitting functions ascribed to 440, 455, and 465 cm¹ for the vibration of Si–O, Ce–S and δ s (P–O) bonds, respectively (Fig. S7c). Significantly, the full width at half maximum (FWHM) of Raman peaks slightly decreases from 26.92 cm⁻¹ (γ -Ce₂S₃@SiO₂) to 22.26 cm⁻¹ (γ -Ce₂S₃@CePO₄@-SiO₂) (Fig. 2b), reflecting the decreasing of defects by introducing the intermediate CePO₄ layer [22]. For all samples, the EPR spectra show resonance signals at g = 2.0003, corresponding to the presence of unpaired or delocalized electrons from sulfur vacancies (V_s) or defects (Fig. 2c) [23,24]. Compared with γ -Ce₂S₃@SiO₂, the γ -Ce₂S₃@CePO₄

Fig. 2. (a) EDS-mapping images of γ -Ce₂S₃@CePO₄@SiO₂, (b) Raman spectra of γ -Ce₂S₃ and γ -Ce₂S₃ composite materials. (c) EPR spectra of γ -Ce₂S₃@CePO₄@SiO₂, γ -Ce₂S₃@CePO₄, and γ -Ce₂S₃@CePO₄@SiO₂ obtained at room temperature.

sample shows relative broader and weaker signal, because the CePO₄ layer has better interface contact with core material through *in-situ* growth, suggesting lower lattice spacing differences for γ -Ce₂S₃@Ce-PO₄@SiO₂ [25,26].

In order to gain deep insights into microstructures, the atomic scale and the crystal lattice were detected by aberration-corrected high-angle annular dark-field scanning TEM (HAADF-STEM) (Fig. 3). The STEM images of γ -Ce₂S₃, γ -Ce₂S₃@SiO₂, γ -Ce₂S₃@CePO₄ and γ -Ce₂S₃@Ce-PO₄@SiO₂ were respectively shown in Fig. 3a-d. The STEM image (Fig. 3e) and Fast Fourier Transformation (FFT) of γ -Ce₂S₃ (Fig. 3j-l) show clear lattice fringes for the inner part of γ -Ce₂S₃ with the (211) and (310) planes from the [1–31]-zone axis, and the edges of γ -Ce₂S₃ are amorphous (Fig. 31). For γ -Ce₂S₃@SiO₂, the enlarged interface of γ -Ce₂S₃@SiO₂ (Fig. 3m) and the electron diffraction patterns (Fig. 3n-p), from which the shell material (SiO₂) and the core section (γ -Ce₂S₃) were well assigned to amorphous and crystalline planes (400) and (211) respectively. For γ -Ce₂S₃@CePO₄, the electron diffraction deriving from the STEM images also confirmed that the (211) and (321) planes were from the core γ -Ce₂S₃ phase, and the (310) and (110) planes were from the out-layer CePO₄ (Fig. 3r-t). In addition, the growth of CePO₄ shell with well lattice matching is shown in Fig. 3q. However, the STEM image of interface between γ -Ce₂S₃ layer and SiO₂ layer shows lattice disorder (Fig. 3m). Taking the advantage of well-formed interface of γ -Ce₂S₃ and CePO₄, the intermediate layer (CePO₄) between the γ -Ce₂S₃ core and the outer shell SiO₂ was inserted to serve as a "lattice adapter" for improving interface compatibility or avoiding defects caused by interface interaction [3,27,28]. As shown in Fig. 3v-x, the FFT pattern of CePO₄ in γ -Ce₂S₃@CePO₄@SiO₂ area is assigned to (100) and (101) planes that parallels to the [0–1 0]-zone axis, and the amorphous of SiO₂ was revealed by the electron diffraction pattern, confirming the result from XRD pattern of γ -Ce₂S₃@CePO₄@SiO₂ (Fig. 1a).

The chromaticity and thermal stability of the aforementioned materials were performed and analyzed. As shown in Fig. 4a, there is prominent absorption in the range of 400–550 nm for all γ -Ce₂S₃ composite materials. The intensity of reflection spectra of γ -Ce₂S₃ coated with SiO₂ show lower reflectance than that of pristine γ -Ce₂S₃ from 590 to 700 nm. The reflectance decreases of the γ -Ce₂S₃@SiO₂ is caused by the energy loss of light wave due to the interaction with surfaces of γ -Ce₂S₃@CePO₄ and γ -Ce₂S₃@CePO₄@SiO₂ are enhanced about 10% to reach ~80% because of the polishing effect of the zinc dihydrogen phosphate on the irregular surface of γ -Ce₂S₃ and the following formed CePO₄ layer *in-situ*. The

Fig. 3. (a–d) HADDF-STEM images of γ -Ce₂S₃ composite materials, (e–h) Magnified STEM images taken from the edges of samples in (a–d), (i) Magnified STEM image taken from the corresponding square area in (e), (j–l) Electron diffraction patterns taken from the corresponding γ -Ce₂S₃ (orange box), the grain boundary (blue box), shell (green box) square area in (e), (m) Magnified STEM image taken from the corresponding square area in (e), (m) Magnified STEM image taken from the corresponding square area in (f), (n–p) Electron diffraction patterns taken from the corresponding core (orange box), core-shell interface (blue box), shell (green box) square area in (f), (q) Magnified STEM image taken from the corresponding square area in (s), (r–t) Electron diffraction pattern taken from the corresponding core (orange box), core-shell interface (blue box), shell (red box) square area in (g), (h) Magnified STEM image taken from the corresponding square area in (g), (u) Magnified STEM image taken from the corresponding square area in (h). (v–x) Electron diffraction pattern taken from the corresponding core (red box), core-shell interface (blue box), square area in (h).

reflectivity of γ -Ce₂S₃@CePO₄ is improved, which reaches the maximum in the range of 590–700 nm, suggesting the highest lightness value. However, it shows the lowest absorption in the range of 400–500 nm. Furthermore, the diffuse reflectance of γ -Ce₂S₃@CePO₄ shows approximately same spectral shape and intensity of in the region of 590–700 nm, accompanied by the strong absorption band between 400 and 550 nm. In addition, the absolute differences values ($\Delta R_{(400-700)}$) between the maximum reflectance (at 700 nm) and minimum absorption (at 400 nm) for the four materials are summarized in Table S1, from which the largest value is found for γ -Ce₂S₃@CePO₄@SiO₂.

In order to visually measure the color properties of human eyes to the light, the CIE chromaticity value a^* and value b^* were calculated by 1931 CIE-*XYZ* color system. The tristimulus values of the quasi-observer derive from the CIE standard illuminator with the light source C and the field

angle of 2° ($X_0 = 98.07$, $Y_0 = 100.00$, $Z_0 = 118.22$). According to CIE 1931 $L^*a^*b^*$, where L^* represents the lightness of the color, a^* represents the red-green axis of the space, and b^* represents the blue-yellow axis of the space [29]. The chroma values of the sample were calculated by the following formulas:

$$L^{*} = 116 \left[f\left(\frac{Y}{Y0}\right) - \frac{16}{116} \right]$$
 (1)

$$a^* = 500 \left[f\left(\frac{X}{X0}\right) - f\left(\frac{Y}{Y0}\right) \right]$$
⁽²⁾

X. Sun et al.

Fig. 4. (a) Visible light reflectance spectra and (b) CIE mapping of γ -Ce₂S₃-based composite materials. (c–d) Optical band gap determined from the visible diffuse reflectance spectra. (e–f) DSC curves and oxidation temperatures for γ -Ce₂S₃-based composite materials.

$$b^{*} = 200 \left[f\left(\frac{Y}{Y0}\right) - f\left(\frac{Z}{Z0}\right) \right]$$
(3)
$$f(w) = \begin{cases} W^{\frac{1}{3}}, W \ge \left(\frac{24}{116}\right)^{3} \\ 7.787 + \frac{16}{116}, W \le \left(\frac{24}{116}\right)^{3} \end{cases}$$
(4)

The calculated results of CIE $L^*a^*b^*$ values are summarized in Table 1. The lightness parameters L^* increases from 53.11 to 54.05 for the pristine γ -Ce₂S₃ to the γ -Ce₂S₃@CePO₄, being consistent with the maximum reflection in the long wavelength range. While both γ -Ce₂S₃@GiO₂ and γ -Ce₂S₃@CePO₄@SiO₂ of parameters L^* decrease slightly, suggesting the SiO₂ layer has a negative influence on the lightness. Meanwhile, except for γ -Ce₂S₃@SiO₂, the major improvement is found for both a^* and b^* parameters for other γ -Ce₂S₃-based composite

 Table 1

 Colorimetric values of v-Ce₂S₂-based composite materials

Sample	L^*	a*	<i>b</i> *	Photo
γ-Ce ₂ S ₃	53.11	41.00	26.00	
γ-Ce ₂ S ₃ @SiO ₂	51.70	40.40	25.78	
γ-Ce ₂ S ₃ @CePO ₄	54.05	42.68	26.18	
γ -Ce ₂ S ₃ @CePO ₄ @SiO ₂	51.90	45.00	30.00	

materials. Especially for γ -Ce₂S₃@CePO₄@SiO₂, the parameters of a^* and b^* increase from (41.00, 26.00) to (45.00, 30.00), corresponding to the CIE chromaticity coordinates ranged from (0.505, 0.340) to (0.527, 0.341) in Fig. 4b.

The correlation between band gap and absorption coefficient is [F(R)] $h\nu$]² = C_1 ($h\nu$ - E_g), where F(R) is the *Kubella-Munk* function, in which F(R) $= (1-R^2)/2R$, and R is defined as the reflectivity of sample's spectral reflectance; C_1 is the proportional constant; the $h\nu$ photon energy is taken as the abscissa and the $[F(R)h\nu]^2$ as the ordinate; and the intersection of the tangent and the x-axis is then the band gap width Eg Refs. [30-32]. As shown in Fig. 4c-d, the band gaps of all samples were calculated as in the range of 2.136-2.142 eV, which are consistent with the results from the CIE color coordinates. In detail, band gaps of 2.137, 2.138, and 2.136 eV are determined for γ -Ce₂S₃, γ -Ce₂S₃@SiO₂, and γ -Ce₂S₃@CePO₄, respectively. However, a large deviation, 2.142 eV, is detected in γ -Ce₂S₃@CePO₄@SiO₂. According to the band gap engineering of semiconductor nanocrystals, band gap shifts are related to the defects at the sample surface and interfacial lattice space differences, which can be regulated through surface reconstruction and passivation effects for core-shell structure [28,33]. We speculate that the wider band gap for γ -Ce₂S₃@CePO₄@SiO₂ is attributed to the modification of the surface defects by the intermediate adapted CePO₄ layer as an effective barrier to inhibit the recombination of electrons and holes, leading to the wider range of chromaticity. On the contrary, y-Ce₂S₃@CePO₄ presents the smallest band gap, reflecting that electron-hole pair is easier to recombine. As shown in Fig. 4a (the magnified red dashed region), γ-Ce₂S₃@CePO₄ has the lowest absorption in the visible short-wave region, although it has the strongest reflectivity in the long-wave region, resulting in chromaticity a^* and b^* values second only to that of γ-Ce₂S₃@CePO₄@SiO₂.

The thermal stability is evaluated by differential scanning calorimetry (DSC). As shown in Fig. 4e and f, the γ -Ce₂S₃ is easily oxidized at 300–400 °C, and the exothermic peak can be further enhanced to 424.8 °C and 441.8 °C for γ -Ce₂S₃ coated with SiO₂ and CePO₄, respectively. It is worth noting that the inserted CePO₄ layer significantly improves the thermal stability (Fig. 4f), and oxidation temperature of γ -Ce₂S₃@CePO₄@SiO₂ reaches up to 476 °C. The acid stability was tested with acetic acid (pH = 4) for all samples (0.3 g) as shown in Fig. S8. With the increase of acid corrosion time, the color change of γ -Ce₂S₃@CePO₄ shows slightly change; However, no further color change was observed for γ -Ce₂S₃@CePO₄@SiO₂ even after 2 h. In a word, CePO₄ as an interlayer modulated core material γ -Ce₂S₃, which is beneficial to improve both thermal and acid stability.

4. Conclusions

In summary, the pristine γ -Ce₂S₃ was obtained by the solid state reaction and an adapt CePO₄ interlayer was successfully introduced onto cerium sulfide. The superior spectral and stability properties were achieved by forming the double-layered core-shell composite as γ -Ce₂S₃@-CePO₄@SiO₂. The new-structure interactions and relevant mechanisms were revealed by high resolution HAADF, short-range magnetic resonance and Raman. The intermediate CePO₄ layer reduced not only the differences of lattice spacing, but also the defects between Ce₂S₃ and SiO₂, further resulting in enhanced lightness (*L**), red chromaticity (*a**) and stability. The structure-activity relationship and superior performances of γ -Ce₂S₃@CePO₄@SiO₂ provide a prospect for the development of the rare earth sulfide composite material.

CRediT authorship contribution statement

Xuan Sun: Investigation, Data analysis, and Writing of the original draft. Wei Dong: Design of experiments. Chenjie Lou, Shuqin Chang: Writing of the editing. Ruiping Deng, Ran Pang, Guangcan Bai, Guoquan Liu, and Huilin Hu: conducting experiments. Jipeng Fu and **Mingxue Tang:** Funding acquisition, Writing - review & editing, Supervision. **Shiqing Xu, Chengyu Li and Hongjie Zhang:** Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

This work is financially supported by the Natural Science Foundation of Zhejiang Province (Grant No. LQ21E020006), the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. 2021YW46), and acknowledge the support from the National Natural Science Foundation of China (No. 62205322).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://do i.org/10.1016/j.jssc.2022.123640.

References

- M. Jansen, H.P. Letschert, Inorganic yellow-red pigments without toxic metals, Nature 404 (2000) 980–982.
- [2] W.X. Mao, W. Zhang, Z.X. Chi, R.W. Lu, A.M. Cao, L.J. Wan, Core-shell structured Ce₂S₃@ZnO and its potential as a pigment, J. Mater. Chem. A. 3 (2) (2015) 176–2180.
- [3] P. Reiss, M. Protière, L. Li, Core/shell semiconductor nanocrystals, Small 5 (2009) 154–168.
- [4] D. Rangppa, T. Naka, A. Kondo, M. Ishii, T. Kobayashi, T. Adschiri, Transparent CoAl₂O₄ hybrid nano pigment by organic ligand-assisted supercritical water, J. Am. Chem. Soc. 129 (2007) 11061–11066.
- [5] Guang Yang, Hao Ding, Daimei Chen, Weihua Ao, Jian Wang, Xifeng Hou, A simple route to synthesize mesoporous titania from TiOSO₄: influence of the synthesis conditions on the structural, pigments and photocatalytic properties, Appl. Surf. Sci. 376 (2016) 227–235.
- [6] X. Li, Y. Li, Z. Wang, Y. Hong, Z. Li, Influence of Ba²⁺doping on the properties and thermal stability of γ-Ce₂S₃, Appl. Phys. 125 (518) (2019).
- [7] Y. Ding, J. Gu, T. Zhang, A.X. Yin, L. Yang, Y.W. Zhang, C.H. Yan, Chemoaffinitymediated synthesis of NaRES₂ -based nanocrystals as versatile nano-building blocks and durable nano-pigments, J. Am. Chem. Soc. 134 (2012) 3255–3264.
- [8] Y. Huang, Z. Guo, H. Liu, S. Zhang, P. Wang, J. Lu, Y. Tong, Heterojunction architecture of N-doped WO₃ nanobundles with Ce₂S₃ nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst, Adv. Funct. Mater. 29 (2019), 1903490.
- [9] B. Liu, X. Hu, X. Li, Y. Li, C. Chen, K. Lam, Preparation of ZnS@In₂S₃ Core@shell composite for enhanced photocatalytic degradation of gaseous O-dichlorobenzene under visible light, Sci. Rep. 7 (2017), 16396.
- [10] Y. Li, S. Le, Z. Wang, Y. Hong, K. Li, Q. Pu, Preparation and characterization of the Sr²⁺-doped γ-Ce₂S₃@c-SiO₂ red pigments exhibiting improved temperature and acid stability, Appl. Surf. Sci. 508 (2020), 145266.
- [11] K. Hui, W. Dong, J. Fu, M. Tang, Q. Wei, C. Li, H. Zhang, Dual-enhancement of chromaticity and thermal stability: in-situ synthesis of core-shell γ-Ce₂S₃@CePO₄ configuration, J. Rare Earths. 40 (2022), 800-806.
- [12] Y. Li, Y. Gao, Z. Wang, Z. Shen, Y. Hong, F. Song, Synthesis and characterization of aluminum-based γ-Ce₂S₃ composite red pigments by microemulsion method, J. Alloys Compd. 812 (2020), 152100.
- [13] J. Xiang, P. Li, Y. Song, X. Liu, H. Chong, S. Jin, Y. Pei, X. Yuan, M. Zhu, X-ray crystal structure, and optical and electrochemical properties of the Au₁₅Ag₃(SC₆H₁₁)₁₄ nanocluster with a core-shell structure, Nanoscale 7 (2015) 18278–18283.
- [14] C. Zhang, R. Lu, C. L, L. Yuan, J. Wang, Y. Zhao, C. Yu, High yield electrosynthesis of hydrogen peroxide from water using electrospun CaSnO₃@Carbon fiber membrane catalysts with abundant oxygen vacancy, Adv. Funct. Mater. 31 (2021), 2100099.
- [15] G. Greczynski, L. Hultman, The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy, Sci. Rep. 11 (2021), 11195.
- [16] P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, L. Sun, Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation, Nat. Commun. 9 (2018) 381.

X. Sun et al.

Journal of Solid State Chemistry 316 (2022) 123640

- [17] X.-B. Dong, X. Zhang, X. Yu, Z. Jiang, X. Li, C. Li, Z. Sun, S. Zheng, D. Dionysiou, A novel rutile TiO₂/AlPO₄ core-shell pigment with substantially suppressed photoactivity and enhanced dispersion stability, Powder Technol. 366 (2020), 537–545.
- [18] E. Bêche, P. Charvin, D. Perarnau, St Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (Ce_xTi_yO_z), Surf. Interface Anal. 40 (2008) 264–267.
- [20] S.-P. Naik, A.-S. Chiang, R.-W. Thompson, F.-C. Huang, Formation of silicalite-1 hollow spheres by the self-assembly of nanocrystals, Chem. Mater. 15 (2003) 787–792.
- [21] E.A. Lalla, S. Shkolyar, C.M. Gilmour, A. D, M. Konstantinidis, Lozano-Gorrín, J. Freemantle, M.G. Daly, Structural and vibrational analyses of CePO₄ synthetic monazite samples under an optimized precipitation process, J. Mol. Struct. 1223 (2021), 129150.
- [22] A.-M. Seydoux-Guillaume, R. Wirth, L. Nasdala, M. Gottschalk, J.-M. Montel, W. Heinrich, An XRD, TEM and Raman study of experimentally annealed natural monazite, Phys. Chem. Miner. 29 (2002) 240–253.
- [23] L. Cai, J. He, Q. Liu, T. Yao, L. Chen, W. Yan, F. Hu, Y. Jiang, Y. Zhao, T. Hu, Y. Jiang, Y. Zhao, T. Hu, Z. Sun, S. Wei, Vacancy-induced ferromagnetism of MoS₂ nanosheets, J. Am. Chem. Soc. 137 (2015) 2622–2627.
- [24] G. Liu, A.W. Robertson, M.J. Li, W. Kuo, M.T. Darby, M.H. Muhieddine, Y.C. Lin, K. Suenaga, M. Stamatakis, J.H. Warner, S.E. Tsang, MoS₂ monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction, Nat. Chem. 9 (2017) 810–816.

- [25] F. Bai, L. Xu, X. Zhai, X. Chen, W. Yang, Vacancy in ultrathin 2D nanomaterials toward sustainable energy application, Adv. Energy Mater. 10 (2020), 1902107.
- [26] R. Kahlaoui, K.I. Sobrados, R. Jimenez, J. Sanz, R. Ternane, Cation miscibility and lithium mobility in nasicon Li₁₊ xTi₂− xSc_x (PO₄)₃ (0 ≤ x ≤ 0.5) series: a combined NMR and impedance study, Inorg. Chem. 56 (2017) 1216–1224.
- [27] G. Gouget, M. Pellerin, R. Orabi, L. P. D'Alençon, T. Mercier, C. B. Murray, Rareearth sulfide nanocrystals from wet colloidal synthesis: tunable compositions, sizedependent light absorption, and sensitized rare-earth luminescence, J. Am. Chem. Soc. 143 (2021), 3300-3305.
- [28] X. Yu, B. Kim, Y.K. Kim, Highly enhanced photoactivity of anatase TiO₂ nanocrystals by controlled hydrogenation-induced surface defects, ACS Catal. 3 (2013) 2479–2486.
- [29] Y. Chen, J. Mandal, W. Li, A. S.-W, C.C. Tsai, Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling, Sci. Adv. 17 (2020) 6.
- [30] J.F. Hoffmann, A.H. Roos, F. Schmitt, D. Hinderberger, W.H. Binder, Fluorescent and water dispersible single-chain nanoparticles: core-shell structured compartmentation, Angew. Chem. 133 (2021) 7899–7906.
- [31] C. Dejoie, P. Martinetto, E. Dooryhee, P. Strobel, S. Blanc, P. Bordat, R. Brown, F. Porcher, M.S. Rio, M. Anne, Indigo@Silicalite: a new organic-inorganic hybrid pigment, ACS Appl. Mater. Interfaces 2 (2010) 2308–2316.
- [32] J.Y. Ding, Q.-S. Wu, Y. Li, Q. Long, Y. Wang, X. Ma, Y. Wang, Self-activated yellow light emitting phosphors of α, β–Ca₃B₂N₄ with long afterglow properties, Inorg. Chem. 21 (2016) 10990–10998.
- [33] M.H. Park, J. Park, J. Lee, H.S. So, H. Kim, S.-H. Jeong, T.H. Han, C. Wolf, H. Lee, S. Yoo, T.W. Lee, Efficient perovskite light-emitting diodes using polycrystalline core-shell-mimicked nanograins, Adv. Funct. Mater. (2019), 1902017.