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ABSTRACT

We investigate the magnetic symmetry of the topological antiferromagnetic material Mn;Ge by torque
measurements. Below the Néel temperature, detailed angle-dependent torque measurements were performed
on Mn;Ge single crystals in directions parallel and perpendicular to the Kagome basal plane. The out-of
plane torque data exhibit +sinf and sin26 behaviors, of which the former results from the spontaneous
ferromagnetism within the basal plane and the latter from the in- and out-of-plane susceptibility anisotropy.
The reversible component of the in-plane torque exhibits sin6¢ behavior, revealing the six-fold symmetry of
the in-plane magnetic free energy. Moreover, we find that the free energy minima are pinned to the direction
of spontaneous ferromagnetism, which corresponds to the maxima of the irreversible component of the in-
plane torque. We provide an effective spin model to describe the in-plane magnetic anisotropy. Our results
demonstrate that the ground state of Mn;Ge is described by the coexistence of a strong six-fold antichiral order

and a weak ferromagnetic order induced by second-order spin anisotropy.

1. Introduction

The topological antiferromagnets, combining the characteristics of
nontrivial topology and antiferromagnetism, arouse significant interests
in modern spintronics [1,2]. Antiferromagnetic materials are ideal
platforms for spintronics applications because of their low susceptibil-
ity to external magnetic fields and vanishing stray field. In addition,
exceptional Berry curvatures of the electron bands in topological anti-
ferromagnets can give rise to the intrinsic anomalous Hall effect [3], as
strong as that observed in conventional ferromagnetic materials [4-7].
Recently, the Kagome-type noncollinear antiferromagnetic compounds
Mn;X, including the hexagonal compounds with X=Ge, Sn, and Ga,
and the cubic compounds with X=Ir and Pt, have attracted intensive
studies [8,9]. In particular, Mn;Ge and Mn;Sn were proposed to be
antiferromagnetic Weyl semimetals [4,7,10-12]. A variety of intriguing
phenomena were observed, such as large anomalous Hall effect [5,6,9,
13-16], spin Hall effect [8,17,18], anomalous Nernst effect [19-22],
and magneto-optical Kerr effect [23]. Imaging and writing magnetic
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domains via the anomalous Nernst effect has also been realized [24].
Recently, the all-electronically controlled antiferromagnetic magnetiza-
tion switching without external field is realize in Mn;Sn [25]. Among
those compounds, Mn;Ge has been found to exhibit a large intrinsic
anomalous Hall effect even at room temperature and this effect is
strongly anisotropic and can be switched with a small applied magnetic
field [6,26].

These interesting transport properties are attributed to the pecu-
liar magnetic patterns of the Mn spins. The unit cell of Mn;Ge is
hexagonal and can be described by the P6;/mmc space group with
Mn and Ge on the 6i and 2c Wyckoff sites, respectively. The Mn
atoms are arranged in a Kagome pattern, with two Kagome layers
per unit cell stacked along the c axis with an in-plane displacement
[See the inset of Fig. 1(b)]. Mn;Ge is a noncollinear antiferromagnetic
crystal with antichiral Mn-spin structure in the basal plane below
the Néel temperature Ty ranging from 365K to 400K [6,27-32]. The
resulting electron bands can support Weyl points that act as effective
monopoles generating large Berry curvatures at the Fermi surface [4,
33,34]. Nevertheless, the magnetic anisotropies of the Mn;X family
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Fig. 1. Out-of plane torque 7.() measurements. The experimental geometry is depicted in the inset of panel (b). (a) . as a function of # sweeping in anticlockwise (right arrow)
and clockwise (left arrow) directions at 7= 4K and H = 4T. As defined in Eq. (1), the reversible torque 7I°(0) consists of two components A, (red dashed line) and A, (blue
dashed line). (b) Normalized irreversible torque ri“ /H as a function of 6 for magnetic fields 1T < H <4T at T =4K. (c) Coefficients A, (top axis and red symbols) and A, (bottom
axis and blue symbols) as functions of H and H?, respectively, at T = 4K. (d) Coefficients A, (red symbols) and A, (blue symbols) as functions of temperature T at H = 4T. The
dash lines are guides to the eyes and the solid and hollow symbols are the results for the samples with the masses of 1.45 mg and 0.0157 mg, respectively.

have long been investigated and debated. The torque measurements in
Mn;Sn indicate a six-fold symmetry and another two-fold symmetry
of the magnetic anisotropy [35]. While a near cubic symmetry of
the anisotropy is found in noncollinear antiferromagnet L1,-ordered
Mn;Ir, which is never found in ferromagnets [36-38]. In addition,
an extremely strong second-order anisotropy appears in Mn;Ir due
to its frustrated triangular magnetic ground state [39]. For Mn;Ge it
was argued that no in-plane anisotropy energy exists up to four-fold
terms [26,28,29], because the second- and the fourth-order anisotropy
energies from each Mn site cancel out and cannot induce significant
energy landscapes [40]. However, a weak in-plane ferromagnetic mo-
ment with nearly isotropic susceptibility is detected in Mn;Ge [29,30].
The origin of this small ferromagnetism is not yet clarified and can
be determined by either spin-orbit coupling effects [4,41,42] or the
local spin anisotropy [40,43-45]. Besides, the magnetic anisotropy for
fields applied along different crystallographic directions have not been
thoroughly evaluated, despite of the availability of neutron diffraction
studies [45,46].

In this work, we use torque magnetometry as a sensitive probe to in-
vestigate the macroscopic magnetic anisotropy in hexagonal Mn;Ge sin-
gle crystals and provide a theoretical analysis based on effective Hamil-
tonian expressed in terms of magnetic order parameters. Torque mag-
netometry is a highly sensitive tool to detect the magnetic anisotropy
of materials. A finite torque, defined as r = m x H, arises as if the
magnetization m is no longer collinear with the applied magnetic field
H. For a fixed rotation axis, the reversible component of the torque
is the rotation-angle derivative of the thermodynamic free energy,
i.e., 7() = —dF/d6, while the irreversible component of the torque
can be induced by the free energy minima acting as intrinsic pinning
centers [47-49]. We introduce an effective spin model to analyze the
observed magnetic anisotropy.

2. Experimental details

High-quality Mn;Ge single crystals were synthesized by melting
stoichiometric quantities of Mn and Ge elements using the Bridgman—
Stockbarger technique [6]. The angle-dependent magnetic torques of
Mn;Ge were performed by using a piezoresistive torque magnetometer
in the Quantum Design Physical Property Measurement System. The
sample was mounted on the center of the torque-lever chip by applying
a small amount of Apiezon N grease. The torsion can be detected by
two piezoresistor grids on the legs of torque lever when the sample
was applied under a magnetic field. The small resistance changes were
measured by a Wheatstone bridge and compared to the calibrated chip
prior to the measurement. The change of the resistance values are
therefore converted into the torque signal with the unit of Nm. The
experimental geometries for out-of plane and in-plane rotations are
shown in the insets of Figs. 1(b) and 2(c), respectively.

3. Results and discussion

Fig. 1(a) shows the out-of-plane angle 6 dependence of torque (z,)
in anticlockwise (Tc+) and clockwise (7)) directions at 7 = 4K and
H =4T. It is found that, when the magnetic field is nearly along the ¢
axis (0 =~ 90°), 7.(0) switches to the opposite value and exhibits a large
torque hysteresis loop in one angle-sweep circle. Such a hysteresis loop
indicates magnetic pinning of a spontaneous ferromagnetic moment m
within the basal plane. In fact, the M (H) loop was previously measured
with the magnetic field along with the basal plane and out-of plane [6].
It displays a tiny spontaneous magnetization of 0.005-0.006yz/Mn at
2 K within the basal plane, which is an order of magnitude larger than
that in the out-of plane [6]. It is evident that the basal plane is the
energetically most favored plane of spontaneous magnetic symmetry
breaking dominated by the Dzyaloshinskii-Moriya interaction [28,30,
32,45,46,50]. As sketched in the inset of Fig. 1(a), the ferromoment m
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Fig. 2. In-plane torque 7,,(p) measurements. The experimental geometry is depicted in the inset of panel (c). (a) 7,,(¢) as a function of ¢ sweeping in anticlockwise (right arrows)
and clockwise (left arrows) directions at T =3K and H = 1T (black lines) and H = 4T (red lines). (b) Normalized irreversible torque T:b /H as a function of ¢ for 0.5T < H <4T
with a step of 0.5T at T = 3K. (c) Rotation hysteresis Wy as a function of H. (d) Reversible torque r;;((p) for H = 1T (black square) and H = 4T (red circle) at T = 3 K. The
solid lines are fitting results by using Eq. (2). (e) Coefficient By as a function of H at T =4K. S, and S, indicate regular-shape samples of square cross section with masses of
5.9 mg and 3.1 mg, respectively, and S, indicates an irregular-shape sample with mass of 4.5mg. The dashed lines are the fitting results by using AH" with n = 2.3 +0.1. (f) Polar
plot of the magnetic anisotropic free energy F(¢) (blue line) obtained from the B, component of the reversible torque in (d).

flips within the basal plane as the in-plane component of the applied
field goes to the opposite direction, which, therefore, results in a sign
reverse of the torque about § = 90°. As shown in the inset of Fig. 1(b),
we find that m is parallel to the [2110] direction. Moreover, we estimate
its amplitude m based on the irreversible torque rir = -1 =
2 mH at 6 = 90°. Fig. 1(b) shows the normalized irreversible torque
rif(e)/H as a function of & measured for 1T < H < 4T. We find that
7(6 = 90°)/H = 0.018 ug and the value is field-independent. This gives
m = 0.009 ug/Mn, which is consistent with the spontaneous in-plane
magnetization 0.007 g /Mn observed in various studies [6,28,30].

The spontaneous ferromoment is also observed in the reversible
component of the torque, i.e., 7.° = (¢} + 77)/2. In Fig. 1(a), we fit
71°(9) data by the formula

7.°(8) = £ A, sin 6 + A, sin 26. (@D)]

Here, the A; component (the red dotted curve) results from the sponta-
neous ferromoment, which takes the positive sign “+ ” for 0 < § < z/2
and the negative sign “—” for /2 < 0 < =, so that it changes suddenly
at 0 = n/2. The A, component (the blue dotted curve) originates from
the difference between the in-plane and out-of-plane susceptibilities.
We show the field and temperature dependence of A, in Figs. 1(c)
and 1(d).

In Fig. 1(c), we observe that A, increases linearly with H, which
confirms a constant in-plane magnetic moment m = A;/H = 0.124 +
0.005Nm/mol/T (0.0075 + 0.0003 ug/Mn), consistent with that found
in the irreversible torque in Fig. 1(a). As shown in Fig. 1(d), m is
temperature-independent up to T ~ 275K, which is still far below the
Néel temperature. On the other hand, from the A, component we can
obtain the susceptibility anisotropy 4y = y,,— x., where y, and y,, are
the out-of- and in-plane susceptibilities, respectively, because the field-
induced magnetization produces a torque equal to %A yH?%sin26 [51,
52]. In Fig. 1(c), we show that A, is negatively proportional to H> and
obtain 4y = —0.0278 m3/mol at T = 4K, which is consistent with the

previous studies [6,30]. Fig. 1(d) indicates that A4y < 0 in the temper-
ature range below 275K and tends to go to zero as the temperature
increases. The low-temperature susceptibility anisotropy reflects the
strength of the Dzyaloshinskii—-Moriya interaction [43], while the high-
temperature behavior y,, — y. ought to be the signal of suppression
of magnetic anisotropy as the Néel temperature is approached from
below. It is worthy to note that the data in Fig. 1(d) are taken from
the two distinct samples with masses of 1.45mg and 0.0157 mg, where
the 0.0157 mg is derived from the torque signal since it is far too small
to measure on an ordinary balance.

In Fig. 2(a), we show the in-plane angle ¢ dependence of the torque
7, in anticlockwise and clockwise directions at T = 3K and H =
1T and 4T. We observe that 7,,(¢) exhibits hysteresis at almost any
angle, which signals magnetic pinning. Fig. 2(b) shows the normalized
irreversible torque T(lzrb /H as a function of ¢ fgr various field strengths
ranging from 0.5T to 4T. We observe that 7, /H exhibits two peaks
for H < 1.5T and six peaks at ¢, = 30° + (n — 1) x 60° (1 < n <
6) for H > 1.5T. The six peaks originate from the six-fold in-plane
magnetic anisotropy due to the crystal field effect [see Eq. (A.3) and
Ref. [53]]. In Fig. 2(c), we show the rotational hysteresis, define by
the area of the hysteresis loop Wi = /02” r;‘b(qJ)d(p and giving twice
the energy lost in rotating the magnetization, as a function of magnetic
field. The high-field rotational hysteresis reveals the existence of the
unidirectional anisotropy due to the coupling between ferromagnetic
and antiferromagnetic orders [54,55], which occurs in parallel with the
exchange bias in the magnetization curves of Mn;Ge [32].

In Fig. 2(d), we fit the reversible torque T;Z((p) using the formula

72:(¢) = By + B, sin[2(@ — m;)]
+ By sin[4(p — my)] + Bg sin[6(p — mg)]. (2)

The fitting result of By is shown in Fig. 2(e). Besides the sample S1
discussed above, Fig. 2(e) also includes the data from the samples S2
and S3, where the black and red hollow symbols are for regular-shape
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samples of square cross section with masses of 5.9 mg and 3.1 mg,
respectively, and the blue symbols for irregular-shape sample with mass
of 4.5 mg. We observe that By is negative and sample-independent
and its magnitude increases with the increase of H exhibiting the
H" dependent behavior with n = 2.3 + 0.1 as the dash line shown
in Fig. 2(e). This observation suggests the intrinsic six fold in-plane
anisotropy properties of Mn;Ge and rules out extrinsic effects such as
magnetoelastic forces. We note that the fitting result of B,, is not
included in Fig. 2(e), because these components are plausibly extrinsic:
By, comes from the background of torque magnetometer, and B, , are
different in magnitude for the three samples and likely induced by the
artificial magnetoelastic anisotropy, which cannot indicate the intrinsic
magnetization with respect to the crystallographic axes [56,57].

In order to further investigate the six-fold symmetry of the magnetic
anisotropy in Mn;Ge, we convert the reversible torque into magnetic
free energy by the definition F(¢p) = — 7.°(¢)d@ up to a constant. In
Fig. 2(f), we show the free energy (blue line) and the related crystal
orientation of Mn;Ge samples (red line) in the polar coordinates. We
find free energy minima ¢, = 30° + (n — 1) x60° (1 < n < 6),
which coincide with the peaks of the irreversible torques at high
field as shown in Fig. 2(b). Not as a surprise, the symmetry of free
energy respecting the Kagome lattice is consistent with the symmetry
obtained by the neutron diffraction studies [45,46]. This confirms that
the magnetic easy axis points aiming the [0110] direction as shown in
the insets of Figs. 1(b) and 2(c).

It has been suggested that the ground-state magnetic phase of
Mn;Ge is described by two in-plane vector orders, i.e., the antichiral
(AC) order A = (A, A,)) [Fig. 3()] and the ferromagnetic (FM) order
M = (M,,M,) [Fig. 3(d)], which are transformed according to the
irreducible representation E;, of the Dg, group [45,46]. The in-plane
magnetic anisotropy can be characterized by the effective Hamilto-
nian written in the polar coordinates M = M(cosa,sina) and A =
A(cos f,sin f) as

H = = (J/6)A* +[C{ + Cf cos(69)1A° + (J /3)M*
+[C + Cf cos(6a)]M® — 2C5 AM cos(a — f)
-2 gugHM cos(p — a), 3)

where J > 0 is the Heisenberg exchange energy, C2’6 and CZ? are
anisotropy energies, H(cos ¢,sin ¢) is an applied Zeeman field, and g
and pp denote the Landé g-factor and Bohr magneton, respectively.
We note that Eq. (3) in the absence of the Zeeman term and M® term
has been introduced in Ref. [45]. We present the derivation of Eq. (3)
based on the crystal electric field theory in Appendix. Minimizing the
energy (3) with respect to (M, A, a, #), one can obtain the ground and
metastable states.

The signs of the anisotropy energies Cg’f’ and C22 can be fixed by our
torque measurements. (i) The relation Cg > |Cg| must be satisfied as the
Hamiltonian (3) should process a well-defined ground state. Otherwise,
for Cg < |Cg|, the ground state prefers infinitely large AC and FM
orders. (ii) In the presence of the Zeeman field, the in-plane torque
Ty = 3CS(ASsin6f + MO sin6a), where (A, M,a,p) take the values
of metastable states. In large-field limit gupz H > Cg(A6 + M®), the
reversible torque r;g ~ Cg sin(6¢). According to the extrema of the
free energy in Fig. 2(f), we can fix Cg > 0. As a consequence, the
ground state prefers A, (B = n/2) order in Fig. 3(c). (iii) In the absence
of Zeeman field, the observed FM order in Fig. 1 indicates finite AC-
FM coupling C22, because the minima of the Hamiltonian (3) occurs at
M = 0 if sz = 0. Moreover, since the FM order is along the [0110]
direction, i.e., M, configuration in Fig. 3(d), we conclude that C22 > 0.
Summarizing the conclusions of (i)-(iii), we obtain

c>Ce>0, C2>o0. C)]

The ground-state orders M, and A, are consistent with the observations
in Refs. [45] and [46].
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Fig. 3. Spin configurations corresponding to the order parameters in Eq. (A.2). (a)
Local orthogonal easy axes u,,; (red) and v,,; (blue). We note that v, corresponds
to [0110] direction in Figs. 1 and 2. (b) Chiral orders L, (solid) and L, (dotted). (c)

Antichiral order A. (d) Ferromagnetic order M. Experimental data in Figs. 1(a) and
2(f) indicate that the ground state prefers the coexistence of A, and M,.

The rotational hysteresis Wy in Fig. 2(c) equals to twice the energy
difference between meta-stable states at the discontinuous jumps as
the sample rotating. Without the six-fold anisotropy Cg = 0, the in-
plane torque is reversible and the rotational hysteresis vanishes Wy =
0. On the other hand, in analogy to the materials with FM-anti-FM
interfaces [54,55], the persistence of Wp at high Zeeman fields should
demonstrate finite FM-AC coupling, since for FM order alone Wy exists
only in a narrow field range. Therefore, the observed W} ought to be
attributed to the combination effect of the six-fold anisotropy and the
AC-FM coupling. However, obtaining Wy as a function of C¢ and C;
requires a full meta-stability analysis of the Hamiltonian in Eq. (3) and
deserves a separate study.

Moreover, from Eq. (3) we can obtain the amplitudes of the ground-
state order parameters

M =3C2A/0, A= (J/184)"", ®)
where 4g = CJ — C¢ > 0. Therefore, the AC-induce FM order is weak
M/A ~ C22 /J < 1, since the anisotropy energies are much smaller the
Heisenberg exchange energy. From our experimental data, we estimate
the equilibrium orders M =3 x 0.0075/g and A = 3 x2.2/g, where the
factor “3” captures the number of spins. Combining the expression of
the susceptibility anisotropy 4y = 8\/§g2,uéD/(3J2) [43] and Eq. (5),
we estimate the relevant energy parameters in Eq. (3), J = 22.4meV,
D = -2.54meV, C; = 2.5x 1072meV, 45 = 1.0 x 1072 meV, where we
have taken g = 2 and the value of J in Ref. [43].

We would like to point out that comparing the characteristic pa-
rameters of the Mn3X family measured by different methods is never
easy. We realize that one of the most annoying obstacles is that various
spin models were introduced to fit experimental data. For example, for
investigating Mn3Ge distinct spin models were introduced in Ref. [40]
[Cable et al. PRB 48, 6259 (1993)] and in Ref. [45] [Soh et al. PRB 101,
140411 (2020)]1, and, unfortunately, the basal-plane characteristic pa-
rameters were not well established. In our work, we proposed that the
Hamiltonian given by Eq. (3) is a “minimal” model that could describe
the basal-plane magnetic anisotropy of Mn3Ge and the parameters can
be estimated from our torque data.

4. Summary

In summary, we investigated the anisotropic magnetic properties of
the antiferromagnet Mn;Ge by torque magnetometry. A spontaneous
ferromoment of m = (7.5 + 0.3) x 1073 yz /Mn is found to arise within
the Kagome basal plane in [0110] direction [Fig. 1(b)]. Furthermore,
in-plane magnetic free energy possesses a six fold symmetry with the
minima at ¢, = 30° + (n — 1) x 60° (1 < n < 6). These minima
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weakly pin the spontaneous ferromoment and cause the maxima of
irreversible in-plane torque. Exploiting an effective Hamiltonian we
estimated the values of various coupling energies, and demonstrate
that the ground state of Mn;Ge is characterized by a strong AC order
“ferromagnetically” coupling to a weak AC-order-induced FM order
with unidirectional anisotropy along [0110] axis. The two- and four-
fold in-plane symmetries cannot been determined. For other hexagonal
compounds as Mn;(Sn, Ga), one may consider the two- or four-fold
anisotropies by introducing extra crystal electric field terms in Eq. (A.1)
and a through study needs intensive numerical analysis.
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Appendix. In-plane anisotropic Hamiltonian

In Mn;X family the presence of the AC order reduces the magnetic
symmetry from hexagonal Dy, to rhombic D,, and the FM order
furthermore reduces D,, to monoclinic C,, [40]. Assuming a uniform
spin configuration respecting the translation and inversion symmetries,
we consider the effective triple-spin Hamiltonian describing the energy
per unit cell [43,45,46],

H=J'S S +DY a-(S;xS)

(k) (k)
3 1
+ Z 2 szl”’Tzzlm —2gugH- Z S;, (A1)
I=1 m=—1 J

where J > 0 is the sum of the Heisenberg exchanges, which favors
noncollinear antiferromagnetic orders [Figs. 3(b) and 3(c)]l, D < 0
is the Dzyaloshinskii-Moriya (DM) interaction mediated by the spin—
orbit coupling that aligns the spins in a 120° structure in the ab
plane and favors the antichiral order [Fig. 3(c)], szl'" represents the
crystal field energy respecting the C,, symmetry, and H is the applied
magnetic field with g denoting the Landé g factor. In Eq. (A.1), the
crystal field tensors Tzzl’” are defined by the Stevens operators O%;" [58]:
T = 321 Z;:l 03(S;) and 09(S) = §%, 03/(S) = (52 + 57)/2,
0;(S) = (5 - §2)/(20), OE"(8) = SH~2"0X2"(S) with 1 <m <11,
where S;, = (u; +iv;) - S; is defined with respect to the local easy
axes u; = (cos[2z(j — 1)/3], sin[2z(j — 1)/3]) and v, = (sin2z(j —
1)/3], —cos[2z(j — 1)/3]), as shown in Fig. 3(a).
We parameterize the in-plane spins by six order parameters [45]

3 3 :
L= u-S;. L,=2v;-S;, M=3YS,
= st =1
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A =—y-S;+uy-S3+u3-S,),
Ay =V S +vy-S34+v3-S,, (A.2)

where the chiral orders L,, L, [Fig. 3(b)], and the AC order A
[Figs. 3(c)] and the FM order M [Figs. 3(d)] are transformed accord-
ing to the irreducible representations B,,, B,,, and E,, of the Dg,
group, respectively. In the polar coordinates M = M(cosa,sina), A =
A(cos ,sin ), and H = H (cos @, sin ¢), the Hamiltonian (A.1) reads

H = aA? + bA* + c(68)A° + dM? + bM* + c(6a) M®
3 2k-1

+ Y oo AT M! =2 gy HM cos(e - a), (A.3)
k=1 I=1

with the coefficients

a=-J/6, b=Cy, d=1J/3, c(6p) = C + C¢ cos 6,
fi1(@, B) = =2C; cos(a — ),
fi3(@. p) = =3C; cos(a — ),
fi5(@. p) = —4C2 cos(a — f) — C{ cos(5a + ),
fao(@. p) = 4CY + 6C; cos(2a — 2p),
fra(@. p) =9C2 + C cos(da +2) + 10C; cos(2a — 2p),
f33(a, B) = =2C2 cos(3a + 3p) — 12C7 cos(a — )
—20C¢ cos(3a — 3p), (A.4)

and f) ,(a, p) = f,,,(B, ).

Two simplifications have been introduced in (A.3): (i) We have
taken L, , = 0, since no chiral orders have been observed in Mn;Ge [45,
46]. (ii) We have applied the energy hierarchy J > |D| > |C]"| >
|C™| for m > 0. According to the crystal field theory [58], Dg,
symmetry only involves Cg, 46 and Cg terms; The AC order reduces Dy,
symmetry to D,;, which in addition involves C;, - and C; terms. The
FM order reduces D,, symmetry to C,,, which furthermore involves
Cii¢ Cie» and C;°. For weak FM order in Mn;Ge, we expect weak Cy,
parameters, i.e., |C["| > |C/m|. Finally, it was argued that no in-plane
anisotropy energy exists up to four-fold terms [26,28,29,40] in Mn;Ge,
so that we neglect the fourth order term Cf = 0 and keep only the
lowest-order AC-FM coupling term sz. Thus the Hamiltonian (A.3) is
simplified to Eq. (3).
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