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ABSTRACT

The melting temperatures of Fe–Ni alloys and their densities in the liquid state at relevant pressure–temperature (P–T) conditions
present in the core are of great importance for understanding the composition and thermal structure of the Earth’s core. We measured
shock temperatures of the Fe–11Ni–18Cr (wt. %) alloy up to ∼304 GPa using a special target configuration, a quasi-spectral pyrometer,
and velocimeter diagnostics in a two-stage light-gas gun. The present results show that Fe–11Ni–18Cr starts to melt at the pressure of
210 (8) GPa and 4700 (300) K and completes at the pressure of 280 (10) GPa and 5250 (350) K under shock loading, which is ∼1000 K
lower than some previous shock temperature measurements. The melting temperatures of the Fe–11Ni–18Cr alloy are 4100 (250) K and
5500 (450) K at the pressures present at the core-mantle boundary (∼136 GPa) and inner-core boundary (∼330 GPa), respectively, which
are slightly lower than that of pure iron. Combined with the previous results of the pressure–density measurements at Hugoniot states,
our results indicate that the presence of limited amounts of Ni and Cr into Fe has a minor effect on its melting curve and density in the
liquid state, suggesting that sufficient light elements are required in the outer core to satisfy both the core density deficit and the reduced
melting temperature.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077531

I. INTRODUCTION

The liquid outer core solidifies at the inner-core boundary (ICB,
∼330 GPa), where the upper limit of the ICB temperature can be
anchored by the melting points of iron (Fe) and its alloys at
∼330 GPa.1 The melting curves of iron and iron alloys have been
widely investigated through high P–T experiments and theoretical
simulations.1–9 Some recent shock and static diamond anvil cell
(DAC) experiments obtained a consensus melting curve of iron up to
∼260 GPa, indicating a melting temperature of ∼6000–6400 K at the
ICB pressure.1,4–6 Possible additional components in the core, includ-
ing Ni, light elements, and trace elements [such as chromium
(Cr)],10,11 are expected to have a significant influence on the physical
properties of iron, including the crystal structure, seismic velocity,
density, and melting behavior.12–17 The contributions of Ni, light

element(s), and trace element(s) to the density of the outer core (as
the core density deficit, cdd) depend on thermal EoSs of the liquid
iron and iron alloys.18,19 The cdd plays an indispensable role in the
geochemical models of the core composition.18 However, creating
the relevant P–T conditions present in the core and measuring the
liquid density is quite challenging in the static compression experi-
ments.20,21 The pressure-temperature-density (P–T–ρ) relation of
liquid iron was still limited up to 116 GPa and 4350 K in a recent
laser-heated DAC study, which reported that the cdd was constant
at 7.5%–7.6%.21 Shock compression experiments have identified the
pressure–density (P–ρ) relations of liquid iron and iron alloys (such
as Fe–Ni and Fe–Ni–Cr alloys) up to the ICB pressure along the
principal Hugoniot,22–24 while the exact Hugoniot temperatures
were not well constrained in the previous experiments.25–27
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A Ni content of 5%–10% is commonly assumed in the Earth’s
core, and Cr is an important trace siderophile element. High-precision
measurements of Cr stable isotopes in meteorites indicated that Cr
could have been partitioned into Earth’s core under conditions pre-
vailing in the lower mantle or at the base of a magma ocean.28–32

Based on a mass balance between chondrites and the bulk Earth, the
core is likely to contain a major fraction (60%–65%) of the Earth’s Cr
budget,11,33 and the abundance of Cr in the core is estimated to be
∼1 wt. %.11 Therefore, it is essential to determine the effects of Ni
and Cr on the physical properties of Fe under the relevant P–T con-
ditions of the core and to understand the origin, evolution, and
current states of the Earth’s core.

Recent laser-heated DAC experiments coupled with in situ
Synchrotron Mössbauer Spectroscopy (SMS) or x-ray absorption
spectroscopy (XAS) indicated that the melting temperatures of
Fe–Ni alloys with 10–20 wt. % of nickel were 200–400 K lower
than that of pure Fe at a pressure near the core-mantle boundary
(CMB, ∼136 GPa).34,35 At higher pressures, the melting tempera-
ture of an Fe–9Ni–19Cr (wt. %) film (12–14 μm thick) measured
by a four-channel optical pyrometry27,36 was 1000–2000 K lower than
that of an Fe film in shock-wave compression experiments with the
same setup,25,26 indicating that the addition of Ni and/or Cr caused a
significant melting temperature depression in Fe. However, a recent
shock experiment using a quasi-spectral pyrometer and optimized
sample assemblages has determined the melting temperature of iron
up to ∼256 GPa,1 which was 1000–2000 K lower than the measure-
ments of previous shock experiments,25,26 but was overall consistent
with the results of the ab initio computations3,37 and laser-heated
DAC experiments.4,5 These results indicate that the melting tempera-
ture of the Fe–9Ni–19Cr film may suffer anomalously high tempera-
tures due to the following two aspects: (a) tiny gaps between sample
and window and (b) low measurement accuracy of the pyrometer.
Thus, the new measurement encourages us to investigate the shock
melting curve of the Fe–Ni–Cr alloy and to develop thermal EoS of
the liquid Fe–Ni–Cr at the relevant P–T conditions of the outer core.

In this study, we measured the temperatures of an Fe–11 wt. %
Ni–18 wt. % Cr alloy (hereafter Fe–11Ni–18Cr) up to ∼304 GPa by
a two-stage light-gas gun. The accuracy of the measured tempera-
ture was ensured by improving the resolution of the pyrometer
(4–6 vs 16 channels in the wavelength of 300–800 nm) and the pro-
cessing of the sample target (film vs dense sample with an ideal
interface treatment). Our results are ∼1000 K lower than some pre-
vious shock temperature measurements.27,36 The melting tempera-
tures of the Fe–11Ni–18Cr alloy were obtained from Hugoniot
temperature measurements at the solid–liquid phase boundary and
were estimated to be 4100 (250) and 5500 (450) K at pressures of
CMB and ICB, respectively. We suggest that the integration of the
limited amounts of Ni and Cr into Fe has a minor effect on the
melting temperature and liquid density under Earth’s core condi-
tions. Our study further constrains the temperature at the ICB and
the core’s composition.

II. EXPERIMENTS

A. Materials

A homogeneous Fe–11Ni–18Cr alloy was used as the starting
sample. The sample density was 7.90 (0.01) g/cm3 as determined by

the Archimedean method. The initial density and chemical compo-
sition of our sample were nearly the same as those of the Fe–Ni–Cr
samples used for the previous shock temperature and Hugoniot
sound-velocity measurements, which contained ∼8–11 wt. % Ni
and ∼18–19 wt. % Cr (Table I).27,38,39 Our sample was machined
into a 3.0-mm-thick disk with a diameter of 40 mm. A single-
crystal lithium fluoride (LiF) with [100] orientation was used as the
window, which has a diameter of ∼23 mm and a thickness of
∼8 mm. In the previous work, a vapor-deposited film (12–14 μm
thick) was used to minimize the surface roughness; however, the
recorded voltage profiles showed that the sample–window interface
still suffered from a more complex thermal interaction than the
theoretical model,27,36 and the possible porosity could have been
introduced during deposition.40,41 The effect of a gap of ∼1 μm on
the temperature measurement by the spectro-radiometric method
has been discussed by Urtiew and Grover.40,41 When the shock
wave arrives at the gap, which can be treated as a free surface of the
sample, the shocked material will release to an ambient pressure
and an elevated temperature. The hot material subsequently
impacts the surface of the window. Consequently, the sample will
be reshocked to a higher temperature, which is significantly larger
than the initial Hugoniot temperature. In this study, thick samples
were employed and their surfaces were optically polished to a
mirror finish to achieve near-ideal contact. More details can be
found in a recent study.1

B. Experimental methods

Shock wave experiments were conducted by a 30-mm-bore
two-stage light-gas gun at the Institute of Fluid Physics, China. The
experimental setup for shock temperature measurement is shown
in Fig. 1. Tantalum (Ta) and copper (Cu) were used as flyer plates,
which had a diameter of ∼23 mm and a thickness of ∼2 mm. The
impact velocity of the flyer was measured using the optic beam
break-out (OBB) method within ∼1% uncertainty. We used an
optical pyrometer with 16 channels to measure the shock tempera-
tures and employed a photon Doppler velocity interferometer
(PDV) to measure the particle velocity profiles at the Fe alloy/LiF
interface simultaneously. Black epoxy glue was coated on the
curved surface of the cylinder window, ensuring that the interface
was clamped inside the target box. The interior of the target box
was evacuated to less than ∼1 Pa before the shot to eliminate possi-
ble strong scattering of the emitted light. More experimental details
can be seen in the previous studies.1,42

TABLE I. Chemical composition of the Fe–Ni–Cr samples.

Elements (wt. %) This study
Duffy and
Ahrens38

Bass
et al.27

McQueen
et al.39

Fe 68 69.7 69.3 68
Cr 18 19.3 19.4 19
Ni 11 8.2 9.1 10
Mn 2 1.3 … 2
Si <1 0.4 0.7 1
Total >99 98.9 98.5 100
Density (g/cm3) 7.90 (0.01) 7.88 (0.01) 7.82 (0.08) 7.896
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Five plate impact experiments were performed to measure the
interfacial temperatures and particle velocity profiles at the Fe alloy/
LiF interface. The impact velocity ranges from 4.78 to 7.03 km/s,
where the Hugoniot pressure (PH) is calculated by the impedance
matching method43–45 based on the measured impact velocities of the
flyer and the known Hugoniot relations of the Fe alloy,38 Cu,46,47 and
Ta48 (Table II). The measured particle velocities were used to deter-
mine the interface pressure (PR) using the Hugoniot relation of the
LiF.49 The uncertainties of PH and PR were obtained using the
methods for error analysis in previous shock compression studies.46,50

The impact conditions and results of the Hugoniot states of the
Fe–11Ni–18Cr alloy are listed in Table II.

A typical spectral radiance history at the Fe alloy/LiF interface
in the measurements is shown in Fig. 2. The uncertainty of the
measured spectral radiance is ∼2%.51 The spectral radiance sharply
increased at point A, indicating the arrival of shock waves at the
interface. The spectral radiance from A to B remained nearly

constant at all pyrometer wavelengths during shock compression,
indicating that our special target configuration avoids strong
thermal emission. The spectral radiance started to decrease with
the arrival of the rarefaction wave at point B. Temperature (TI) and
emissivity (ε) at the interface were obtained by fitting the measured
spectral intensities to Planck’s equation for gray-body radiation
(Fig. 3).1,42 We estimated the uncertainties of TI and ε using the
method of Ref. 52. The present pyrometer has a time resolution of
∼3 ns, which allows us to obtain the time-resolved temperature
profile at the interface (Fig. 4).

The particle velocity profiles at the interface between the sample
and the LiF window show a clear plastic single-wave structure
(Fig. 4), as measured using the PDV during the pyrometer measure-
ments simultaneously. Both the interfacial temperature and the parti-
cle velocity profile exhibit a stable plateau (∼530 ns) between points
A and B (Fig. 4). Therefore, the interface reached physically thermal
equilibrium during the present measurements.1,42

III. RESULTS AND DISCUSSION

A. Shock temperature of Fe–11Ni–18Cr alloy

The shock impedance of LiF is lower than that of the
Fe–11Ni–18Cr alloy.38,49 Consequently, the Hugoniot pressure (PH) is
partially released to the interface pressure (PR) when the shock wave
propagates from the sample to the LiF window. The partial release
at the interface will be treated as a quasi-isentropic process.53 Thus,
the Hugoniot temperature (TH) of the Fe–11Ni–18Cr alloy could be
derived from the release temperature (TR) at PR according to the
Mie–Grüneisen thermal equation,1

TH ¼ TRexp �
ðVH

VR

(γ/V) dV

� �
, (1)

where VH and VR are the volumes of the Fe–11Ni–18Cr alloy at the
pressures of PH and PR, respectively, and γ is the Grüneisen parameter,
which can be taken from previous shock experiments.38 Based on the
one-dimensional thermal conduction model,54 TR is calculated from
the measured temperature TI as follows:

FIG. 1. Schematic diagram of the experimental setup for simultaneously mea-
suring the interface temperature and particle velocity. w represents the impact
velocity of the flyer, which was measured by the optic beam break-out (OBB)
method. We used the optical pyrometer and photon Doppler velocity interferom-
eter to measure the interface temperature and particle velocity, simultaneously.
The interior of the target box was evacuated to be less than ∼1 Pa before the
shot.

TABLE II. Impact conditions and the Hugoniot and partially released states of Fe–11Ni–18Cr alloy in the pyrometer experiments. Notes: w is the measured impact velocity and
its uncertainty is estimated to be 1 % at the 2σ level; upi is the measured particle velocity at the Fe–11Ni–18Cr alloy/LiF interface and its uncertainty is given at the 2σ level,
including the inherent accuracy of the PDV measurement and uncertainties due to the fluctuation of particle velocity profiles; up, US, and PH are the particle velocity, shock-
wave velocity, and Hugoniot pressure, respectively, and are calculated from w and the known Hugoniot relations of the flyers and Fe–Ni–Cr alloy; and PR is the interface pressure
calculated from upi and the Hugoniot relation of LiF. The Hugoniot parameters used in this study are Us (km/s) = 4.58 (0.01) + 1.49 (0.01)up with a density of 7.87 (0.02) g/cm

3 for
the Fe–11Ni–18Cr alloy;38 Us (km/s) = 3.310 (0.008) + 1.296 (0.005)up with a density of 16.684 (0.03) g/cm3 for flyer Ta;48 Us (km/s) = 3.933 (0.004) + 1.500 (0.025)up with a
density of 8.939(5) g/cm3 for flyer Cu;46,47 and Us (km/s) = 5.215 (0.02) + 1.351 (0.03)up with the density of 2.640 (0.002) g/cm

3 for LiF.49 The uncertainties of up, US, PH, and PR
are given at 2σ levels based on the methods for error analysis in previous shock compression studies.46,50

Shot No. Flyer w (km/s)
Sample/window Sample

upi (km/s) up (km/s) Us (km/s) PH (GPa) PR (GPa)

ST-1 Ta 4.78 (0.05) 3.82 (0.04) 2.81 (0.02) 8.76 (0.04) 193.4 (2.9) 104.6 (1.7)
ST-2 Ta 5.21 (0.05) 4.15 (0.04) 3.05 (0.03) 9.13 (0.04) 219.5 (3.1) 118.6 (1.7)
ST-3 Ta 5.72 (0.06) 4.58 (0.05) 3.35 (0.03) 9.57 (0.05) 252.3 (4.0) 137.9 (2.3)
ST-4 Cu 7.03 (0.07) 4.88 (0.05) 3.59 (0.03) 9.92 (0.05) 280.1 (4.3) 152.1 (2.5)
ST-5 Ta 6.47 (0.06) 5.15 (0.05) 3.78 (0.04) 10.22 (0.05) 304.3 (4.4) 165.5 (3.0)
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TR ¼ TI þ (TI � TW)/α, (2)

where TW is the shock temperature of the LiF window at PR and α is
the proportionality coefficient of the sample to the window, which can
be calculated using the following equation:

α ¼ (ρCκ)S
(ρCκ)W

� �1
2

, (3)

where ρ, C, and κ are the density, heat capacity, and thermal conduc-
tivity, respectively, and the subscripts S and W denote sample and LiF
window, respectively. The density and shock temperature values of the
LiF window were obtained from previous experiments and calcula-
tions.49,55 The heat capacity of the LiF window used in this study was
∼1.638 J/g/K.56 The thermal conductivity of the LiF window was
taken from recent calculations and experiments.49,57–59

The heat capacity of the Fe–11Ni–18Cr alloy could be treated
as a classical limit C = 3R/M (where R is the gas constant and M is
the molar mass). The thermal conductivity of the Fe–11Ni–18Cr
alloy was considered equal to those of Fe and the Fe–10Ni
alloy.60–62 The coefficient α was calculated to be approximately
3.1–5.1, which was consistent overall with the value of 4.4 calcu-
lated by Bass et al.27 The obtained values of TH, TR, and α in this

FIG. 2. Typical time-resolved spectral radiances at the interface of the
Fe–11Ni–18Cr alloy/LiF window in shot No. ST-3. Point A represents the arrival
time of shock waves at the sample/window interface, and point B indicates the
arrival of rarefaction waves at the interface.

FIG. 3. Typical spectral radiances of the interface under shock loading as a
function of wavelength in shot No. ST-3. The measured thermal radiances
(open black circles) at discrete wavelengths are fitted to Planck gray-body spec-
trum (black lines) to derive the interface temperature and emissivity.

FIG. 4. Particle velocity profiles and interfacial temperature profile at the
Fe–11Ni–18Cr alloy/LiF interface as a function of time. (a) Particle velocity pro-
files were measured by the PDV during the pyrometer measurements simultane-
ously. Particle velocity profiles show a clear plastic single-wave structure, and no
elastic pioneer or phase-transition wave is observed. (b) A comparison of the
typical profiles between the time-revolved particle velocity (upi) and interfacial
temperature (TI) in shot No. ST-3.
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study are given in Table III. The obtained Hugoniot temperature of
the Fe–11Ni–18Cr alloy in this study was ∼800–1300 K lower than
that of the previous results (Fig. 5).27,36

We also calculated the Hugoniot temperature of the Fe–11Ni–
18Cr alloy using a thermodynamic equation,22,39

dT ¼ �T(γ/V)dV þ 1
2CV

� �
[(V0 � V)dP þ (P � P0)dV], (4)

where γ/V was estimated to be a constant value of 17 according to
the measured bulk wave velocities of the Fe–Ni–Cr alloy under shock
loading.38 The calculated solid Hugoniot temperature is ∼4294 K at
∼193 GPa (shot No. ST-1, Fig. 5), which is consistent with our
obtained Hugoniot temperature by the pyrometer measurement
(∼4373 K). The obtained Hugoniot temperature showed a discontinu-
ity at a pressure of ∼219.5 GPa (shot No. ST-2, TH= 4822 K) and was
significantly lower than the calculated solid Hugoniot temperature
(5228 K), indicating that the sample begins to melt.

B. Melting behaviors of Fe–11Ni–18Cr alloy at high
pressures

Shock-induced superheating was proposed to reconcile the
discrepancies of the melting temperatures of transition metals (e.g.,
iron, tantalum, and vanadium) at high pressures between the
dynamic experiments25,26,63,64 and static experiments.3–5,37,65–69

Luo and Ahrens70 proposed that the heating rate under shock com-
pression is larger than that of the rearrangement of atoms needed
for melting, suggesting that the shock-induced superheating would
shift the melting point to a higher value. However, the melting
temperatures of iron and vanadium measured by recent dynamic
experiments1,71 are overall consistent with the results obtained by
both laser-heated DAC experiments and theoretical
calculations,3–5,37,68,71 indicating that the discrepancies are mainly
due to the experimental techniques in the previous dynamic experi-
ments. Some experiments and theories found that the relaxation
times of electron–electron, electron–phonon, and phonon–phonon
thermalization in metals after lattice excitations are lesser than a
picosecond (10−12 s).72–74 The fast relaxation time indicates that the

equilibrium will be established very quickly in shocked metals, sup-
porting that there is no remarkable superheating effect of metals in
dynamic or static compression experiments.1,26,71,75,76 Thus, we did
not consider the shock-induced superheating in this study.

The Fe–11Ni–18Cr alloy was shocked or released into a
mixed-phase where the solid and liquid phases coexist. Thus, in the
solid–liquid mixed-phase region, the melting temperature (TM) at
the Hugoniot state can be obtained because TM is equal to TH for
partial melting.77 Based on a heat conduction model, the TM of
the mixed-phase at PR can be obtained from the shock-induced
initial melting and subsequent solidification.53,78–80 When the
Fe–11Ni–18Cr alloy was partially released to PR, it remained in the
mixed-phase.81 The temperature of the window (TW) is signifi-
cantly lower than that of the mixed-phase (TR), resulting in a
thermal conduction between the Fe–11Ni–18Cr alloy and the LiF
window. The thermal conduction would result in a subsequent sol-
idification of the mixed-phase at the measured interface tempera-
ture (TI) and PR. Therefore, the TM at PR can be constrained by
solving the heat conduction equations at the conditions of the
boundary between the sample and window, as described in detail
elsewhere.1,78,79 According to the temperature distribution across
the interface between the sample and window in Tan–Ahrens’
model, TM was constrained between TI and TR at PR,

79

TM ¼ TI � [(TI � TW)erf (μ)]/α, (5)

where erf(μ) is the error function related to the heat diffusivity of
the sample, which is approximately equal to −0.5.53 Therefore, the
TM value is approximated to the median from TI to TR,

53

TM ffi TI þ (TI � TW)/(2α) ¼ (TI þ TR)/2: (6)

The semiempirical Simon–Glatzel equation82 can be used to
fit the melting curve over a large range of high pressures for a
variety of metals68,75,83–99 and alloys,15,34,35,100–104

TM ¼ T0
P � P0

a
þ 1

� �1
b

, (7)

TABLE III. Melting and Hugoniot temperatures of the Fe–11Ni–18Cr alloy. Notes: TI is the temperature of the Fe–11Ni–18Cr alloy/LiF interface obtained by fitting the measured
spectral radiation intensities; the uncertainty of TI is obtained by the sum of the pyrometric measurement error [including pyrometer calibration error, the photomultiplier tube
(PMT) dynamic response error, and experimental measurement error] and the uncertainty on the determination of temperature using Planck’s equation for gray-body radiation;1

TW is the temperature of the LiF window at the PR and its uncertainty is roughly estimated from previous experiments and calculations;49,55 κW is the thermal conductivity of
the LiF window at the PR and its uncertainty is obtained from previous experiments and calculations;49,57–59 κS is the thermal conductivity of the sample at the PR; α is the pro-
portionality coefficient of the sample to the window calculated using Eq. (3); TR is the temperatures of the Fe–11Ni–18Cr alloy at the partially released state (PR) calculated
from TI; TH is the temperature of the Fe–11Ni–18Cr alloy at Hugoniot state (PH) calculated from TR; and TM is the melting temperature of the Fe–11Ni–18Cr alloy at PR calcu-
lated from Eq. (6). The uncertainties are given in parameters at 2σ levels, and the uncertainties of TH and TM are derived from standard error propagations of the related
parameters with errors.

Shot No. TI (K) TW (K) κW at PR (W/m/K) κS at PR (W/m/K) α TR (K) TH (K) TM (K) at PR

ST-1 3322 (201) 2235 (135) 4.9 (0.4) 70 (5) 3.1 (0.3) 3673 (242) 4373 (368) …
ST-2 3722 (267) 2615 (140) 4.2 (0.4) 78 (5) 3.5 (0.4) 4038 (301) 4822 (458) 3880 (301)
ST-3 4003 (140) 3195 (160) 3.5 (0.4) 93 (5) 4.2 (0.5) 4195 (226) 5011 (252) 4099 (226)
ST-4 4198 (202) 3385 (170) 3.1 (0.4) 101 (10) 4.7 (0.5) 4371 (264) 5240 (337) 4284 (264)
ST-5 4583 (316) 3435 (175) 2.8 (0.4) 109 (10) 5.1 (0.5) 4808 (361) 5815 (449) …
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where a and b are fitting parameters, TM and P are the thermody-
namic conditions of the melting curve, and T0 and P0 are the coor-
dinates of the starting point of the melting curve. The melting
curve of the Fe–11Ni–18Cr alloy was obtained by fitting the deter-
mined melting temperatures at PR and PH from 119 to 280 GPa to
the Simon–Glatzel equation (Fig. 5). The obtained fitting parame-
ters are a = 10 (2) and b = 3.01 (0.15) when taking the starting
melting point T0 = 1700 K at a reference pressure P0 = 0 GPa.105

Consequently, we obtained the P–T curve of the liquid
Fe–11Ni–18Cr along the Hugoniot from the solid Hugoniot by
subtracting a temperature change (ΔT) due to the latent heat of
melting (ΔT = TomΔS/CV, Tom, and ΔS are the temperatures at
which the melting starts and the entropy change of melting, respec-
tively)42 (Fig. 5). Our determined solid and liquid Hugoniot curves
showed a discontinuity between ∼210 (8) GPa [4700 (300) K] and
∼280 (10) GPa [5250 (350) K], indicating a complete molten
Fe–11Ni–18Cr above ∼280 GPa under shock loading. Meanwhile,
the measured sound velocity of the Fe–Ni–Cr alloy shows that the
shocked sample starts to melt along the Hugoniot at ∼210 GPa and
completely melts at ∼245 GPa (Fig. 5).106 The onset of melting for
the Fe–Ni–Cr alloy determined from the temperature measurement
agrees well with the estimated value from the sound-velocity mea-
surements, while the completing pressure is ∼35 GPa higher.
Therefore, further reliable experiments are required to measure the
sound velocity along the Hugoniot curve in order to accurately
determine its melting behaviors.

Based on the fitted melting curve, the melting temperatures of
the Fe–11Ni–18Cr alloy are constrained to be 4100 (250) and 5500
(450) K at 136 and 330 GPa, respectively. Compared to the litera-
ture values,27 our determined melting temperature of the Fe–Ni–Cr
alloy is ∼700 K lower than the previous estimates at near ICB pres-
sure (Fig. 5).

IV. GEOPHYSICAL IMPLICATIONS

A. Temperature at the inner-core boundary (TICB)

The obtained melting curve of the Fe–11Ni–18Cr alloy is
compared with the melting curves of Fe,1 Ni,87 and other Fe
alloys13,42 at the outer core pressures (Fig. 6). The melting tempera-
ture of the Fe–11Ni–18Cr alloy is lower than that of Fe under high
pressures. Considering the uncertainties of the melting tempera-
tures, the real differences in the melting temperature among these
metals and alloys are difficult to highlight at the ICB pressure.107

However, we can estimate the effects of Ni and Cr on the melting
temperature of Fe at the ICB pressure, as previous studies
did.12,42,87 The melting curve of pure Ni86,87 is close to that of Fe,
which is only ∼200 K lower than that of Fe at the ICB pressure.1

Assuming a linear relationship between the two end-members,87,108

the melting temperature depression in Fe is estimated to be ∼1.5 K/
wt. % for Ni. Similarly, we estimate a decrease of ∼25 K/wt. % Cr in
the melting temperature of Fe. Compared with the effects of the
candidate light elements (such as Si, O, or S) on the melting tem-
perature of Fe,12,13,42 our result suggests that the addition of a small
amount of Ni and Cr has a minor depression effect on the melting
temperature of Fe at the ICB pressure.

Based on geochemical, cosmochemical, and meteorite compo-
sitional evidence, it is suggested that the Earth’s core contains
approximately 5–10 wt. % Ni and ∼1 wt. % Cr.11 Consequently, the
alloying of Ni and Cr may decrease the melting temperature of Fe
by ∼33–40 K at the ICB pressure. For some model core composi-
tions including 5–10 wt. % light elements,109,110 we suggest a rea-
sonable value of ∼5400–5600 K at the ICB using less extrapolative
estimation taking into account the effects of Ni, Cr, and light ele-
ments on the melting point of Fe.

FIG. 5. Experimental data on the shock melting of the Fe–Ni–Cr alloy at high
pressures. (a) Sound velocities of the Fe–Ni–Cr alloy at high pressures. Open
squares and open circles are the compressional and bulk sound velocities of
the Fe–Ni–Cr alloy, respectively;38,106 and the sound-velocity discontinuity
occurs at a pressure of ∼210 GPa, indicating that the Fe–Ni–Cr alloy starts to
melt under shock loading. (b) Measured temperatures of the Fe–Ni–Cr alloy
along the Hugoniot curve and partially released states under shock loading
and a comparison with previous measurements. Solid red squares and circles
represent our determined melting temperatures and Hugoniot temperatures of
the Fe–11Ni–18Cr alloy, respectively; open blue squares,27 open blue
circles,27 and open green circles36 represent the previously measured melting
temperatures and Hugoniot temperatures of the Fe–9Ni–19Cr films, respec-
tively; solid red and blue lines represent the fitted melting curves of the
Fe–Ni–Cr alloys in this study and Ref. 27, respectively; and red and blue
dashed-dotted lines represent the calculated Hugoniot temperatures of the
Fe–Ni–Cr alloy in this study and Ref. 27, respectively. CMB, core-mantle
boundary and ICB, inner-core boundary.
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B. Density of liquid Fe–11Ni–18Cr at relevant
conditions of the Earth’s outer core

To evaluate the effects of Ni and Cr on the density of the outer
core,111 the P–ρ profiles of Fe–11Ni–18Cr and Fe–(10–26.2)Ni alloys
are compared with that of pure Fe and Ni along the principal
Hugoniot (Fig. 7).23,24 The Hugoniot density of solid pure Ni is larger
than that of solid pure Fe,23,24 while the addition of 5–18 wt. % Ni
into Fe does not significantly change its density under high P–T con-
ditions in DAC experiments18,112–114 and shock compression experi-
ments (Fig. 7).23,24 It is noteworthy that the Hugoniot density of solid
Fe (or Fe–Ni) is slightly reduced with the addition of 18 wt. % Cr at
high P–T. With the increase of shock pressure, the density difference
between Fe–11Ni–18Cr and Fe becomes narrow and even indistin-
guishable after shock-induced melting.23,24 Because the shock temper-
ature of the Fe–11Ni–18Cr is slightly lower than that of pure Fe,
alloying a certain amount of Ni and Cr does not modify the density
of Fe in the liquid state at the outer core conditions.

The determined P–T–ρ of liquid Fe–11Ni–18Cr allows us to
establish its thermal EoS and estimate the upper limit of the cdd in
the outer core. Thermal EoS of liquid Fe–11Ni–18Cr was obtained
using a single EoS model based on the Mie–Grüneisen equation,115

P(V , T) ¼ PT0 (V)þ ΔPth(V , T), (8)

where P(V, T) is the total pressure, which is the sum of the pressures
at a reference temperature PT0 (V) and a thermal pressure ΔPth(V, T)

and T0 is a reference temperature of 1700 K taken from the melting
point of Fe–11Ni–18Cr alloy at ambient pressure. PT0 (V) can be cal-
culated by the Vinet (Morse–Rydberg) equation,116

PT0 (V) ¼ 3KT0

V
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(9)

where KT0 and K 0
T0

are the isothermal bulk modulus and its pressure
derivative at zero pressure and T0, respectively. ΔPth(V, T) can be
expressed as follows:115

ΔPth(V , T) ¼ γ(V)
V

ΔEth(V , T) ¼ γ(V)
V

[Eth(V , T)� Eth(V , T0)],

(10)

where γ(V) is the Grüneisen parameter and Eth(V, T) is the
internal thermal energy. The volume dependence of γ(V) can be
considered as21

FIG. 7. Pressure–density profiles of Fe, Ni, and Fe–Ni alloys at high pressures
and compared with seismological observations. Open red, orange, and blue
circles represent the shock Hugoniot data of Fe,23 Ni,24 and Fe–11Ni–18Cr,24

respectively; open carmine, green, and dark yellow diamonds represent the
shock Hugoniot data of Fe–Ni alloys containing 10, 17.9, and 26.2 wt. % Ni,
respectively;24 black asterisks represent the density of seismic observations
from the Preliminary Reference Earth Model (PREM);111 solid red, orange, and
blue lines represent the solid Hugoniot of Fe,23 Ni,24 and Fe–11Ni–18Cr,24

respectively; dashed red and blue lines represent the liquid Hugoniot of Fe23

and Fe–11Ni–18Cr,24 respectively; and violet crosses represent the calculated
isothermal P–ρ of liquid Fe–11Ni–18Cr up to the ICB pressure at 5500 K. The
upper limit of the core density deficit (cdd) is estimated to be ∼9.4% at the ICB
based on the calculated density of liquid Fe–11Ni–18Cr.

FIG. 6. Melting curve of the Fe–11Ni–18Cr alloy and comparison with the
melting curves of Ni, Fe, and Fe alloys with candidate light elements at the
outer core pressures. Solid and dashed green lines represent the experimental
and extrapolated melting curve of Fe;1 violet dashed line represents the extrapo-
lated melting curve of Ni;87 solid and dashed red lines represent the experimen-
tal and extrapolated melting curve of the Fe–11Ni–18Cr alloy in this study; solid
and dashed blue lines represent the experimental and extrapolated melting
curve of the Fe–8Ni–10Si alloy;42 and solid and dashed yellow lines represent
the experimental and extrapolated melting curve of Fe–8O–2S.13 Red vertical
ticks represent the error bars for the melting curve of the Fe–11Ni–18Cr alloy.
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γ(V) ¼ γ0
V
V0

� �b

: (11)

The internal thermal energy [Eth(V, T)] could be simply repre-
sented by a second-order polynomial of temperature with a
volume-dependent second-order coefficient as follows:115

Eth(V , T) ¼ 3nR T þ e0
V
V0

� �g

T2

� �
, (12)

where n is the number of atoms in the formula unit; R is the gas
constant; and e0 and g are constants. The EoS parameters of liquid
Fe–11Ni–18Cr were determined by combining our shock tempera-
ture measurements with previous shock Hugoniot data,24 where the
EoS parameters were as follows: T0 = 1700 K,105 ρ0 = 7.06 g/cm3,117

KT0 ¼ 92 GPa, K 0
T0

¼ 5:2, γ0 = 2.2, b = 0.7, e0 = 0.68 × 10–4 K−1, and
g =−1. We then obtained isothermal P–T–ρ data for the liquid
Fe–18Cr–11Ni at 5500 K (the melting temperature of Fe–11Ni–18Cr
at the ICB pressure). Thus, the upper limit of the cdd is estimated to
be ∼9.4 % at the ICB. Our study suggests that sufficient light elements
are required in the outer core to satisfy the cdd.

V. CONCLUSIONS

The shock temperatures of an Fe–11Ni–18Cr alloy are deter-
mined up to ∼304 GPa and ∼5820 K using a time-resolved
quasi-spectral optical pyrometer in a two-stage light-gas gun. The
melting curve of the Fe–11Ni–18Cr alloy is determined up to
∼280 GPa. The melting temperatures of the Fe–11Ni–18Cr alloy at
CMB and ICB are constrained to be approximately 4100 (250) and
5500 (450) K, respectively, which are slightly lower than that of
pure iron. Our study indicates that the integration of limited
amounts of Ni and Cr into iron has a minor effect on its melting
behavior and liquid density, suggesting that a significant amount of
light elements are required in the outer core.
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