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ABSTRACT: Hydrogen transfer (H-transfer) is an important
elementary reaction in chemistry and bioscience. It is often
facilitated by the hydrogen bonds between the H-donor and
acceptor. Here, at room temperature and high pressure, we found
that solid 2-butyne experienced a concerted two-in−two-out
intermolecular CH···π H-transfer, which initiated the subsequent
polymerization. Such double H-transfer goes through an aromatic
Hückel six-membered ring intermediate state via intermolecular
CH···π interactions enhanced by external pressure. Our work shows that H-transfer can occur via the CH···π route in appropriate
conformations under high pressure, which gives important insights into the H-transfer in solid-state hydrocarbons.

Hydrogen is the most abundant element in the universe,
and hydrogen transfer (H-transfer) under high pressure

is of great importance to petroleum science, geoscience,
planetary science, chemistry, and bioscience. It is the key step
in the C−H circulation inside the earth, the reaction of
organics and inorganics in giant planets,1−3 and the synthesis
of high-temperature superconductors.4 Typical H-transfer
usually occurs via a hydrogen bond (H-bond), which can be
tuned in very small steps but on very large energy scales under
high pressure, hence changing the kinetics and even the
thermodynamics of the H-transfer. For example, in ice the
classical O···HO ↔ OH···O double-well H-bond becomes
symmetric at about 100 GPa.5,6 The moderate N−H···N H-
bond in solid NH3 was predicted to lead to H-transfer and
form NH4

+ and NH2
− under high pressure.7 Even a much

weaker hydrogen bond, CH···N in solid CH3CN, was reported
to induce H-transfer from methyl to the N atom under high
pressure.8 Similarly, in the pressure-induced polymerization
(PIP) of pyridine, the hydrogenation of nitrogen was also
observed.9−12 In enzymatic H-transfer reactions, pressure
would decrease the reaction barrier and increase the catalytic
rate, which is also related to the variation of the H-bond under
high pressure.13

From the above discussion, it seems that the H-bond is a
prerequisite for H-transfer. On the other hand, as a kind of
weak interaction, the CH···π interaction is extensively present
in aromatic, alkene, and alkyne compounds and has been
widely investigated in supramolecular chemistry.14−17 The
CH···π interaction can be enhanced/modified upon compres-
sion, such as the shift in the CH···π-bonded sheets in the high-
pressure phase transition of benzene.18 Until now, there has
been no report on the H-transfer from a saturated carbon to
the unsaturated carbon of the arene or alkyne at room

temperature without a catalyst, owing to the weak
intermolecular interaction and the inertness of the C−H
bond. In this work, we investigated the high-pressure chemical
transformations of solid 2-butyne (C4H6), which has extensive
intermolecular C−H···π interactions. We found that under
high pressure the methyl hydrogen is transferred to the ethynyl
group of the adjacent molecule via the C−H···π path, which
leads to the isomerization of 2-butyne and a new polymer-
ization route instead of the direct addition of unsaturated
bonds.19−22 It is an intermolecular concerted H-transfer of 2-
butyne via an aromatic Hückel six-membered ring intermediate
state, resulting in the formation of more stable 1,3-butadiene.
Such a H-transfer process is probably widely applied between
other saturated and unsaturated hydrocarbons in the dense
solid under high pressure.23

We measured in situ Raman and IR spectroscopy of 2-
butyne at up to 32 GPa (Figure 1a,b, peak assignments in
Table S1, more data in Figure S1). The liquid 2-butyne
solidified at 0.9 GPa into phase I (P42/mnm, molecules aligned
parallel inside the layers with the orientation perpendicular to
that of adjacent layers) and transformed to phase II (C2/m, all
molecules aligned parallel) at 1.7 GPa as reported.24,25 Above
14.1 GPa, phase II was amorphized or reacted because all
Raman peaks disappeared (Figure 1a). When recovered from
18.8 GPa, a colorless solid was obtained, and an intense Raman
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peak at 1628 cm−1 was observed, which was assigned to CC
stretching mode ν(CC) (green line in Figure 1a). Likewise,
the sample synthesized via a Paris-Edinburgh (PE) press at 20
GPa (referred to as PE-20) is also a colorless solid dominated
by sp2 carbon (blue line in Figure 1a).
An in situ IR investigation provides more information on the

variation of methyl groups. At 11.9 GPa, the CH3 rocking
vibration ρ(CH3) and CH3 deformation vibration δ(CH3) at
1061 and 1443 cm−1, respectively, started to split, and the C−
H stretching at 3062 cm−1 was enhanced (Figure 1b; see
Figure S2 for details). This is likely due to the conformational

changes of methyl in the crystal. At 21.2 GPa, two distinct new
bands appeared at 892 and 1402 cm−1 (Figure 1b). The former
is in the region of C−C stretching vibration ν(C−C) and CH2

or CH wagging vibration ω(CH2, CH), and the latter is
ascribed to new CH2 or CH deformation vibrations δ(CH2,
CH).26 In addition, a shoulder at 2975 cm−1 was observed on
the low-frequency side of the CH3 stretching ν(CH3), which is
assigned to the C−H stretching of CH2 or CH, ν(CH2, CH).

26

These features indicate that the methyl group of 2-butyne was
transformed to a methylene (−CH2−) or methyne group
(R3CH) during compression, with some hydrogen atoms

Figure 1. Selected Raman and IR spectra of 2-butyne under high pressure. (a) In situ Raman spectra from 0.4 to 18.8 GPa during compression and
decompression (D-pressure) and Raman spectrum of the recovered PE-20 sample at ambient pressure. PE-20 stands for the sample recovered at 20
GPa by using the PE press. (b) In situ IR spectra of 2-butyne from 0.4 to 30.6 GPa during compression and decompression (D-pressure). D-0
stands for the sample recovered at ambient pressure. The gray arrows represent the splitting or enhancing of peaks related to methyl groups. The
asterisks highlight the appearance of new peaks. More data are available in the Supporting Information.

Figure 2. (a) Gas chromatography of the components extracted from the PE-20 sample by n-hexane, with the inset pie chart showing the contents
of the components. Nineteen compounds with content higher than 1% were marked with matching colors according to the degree of
polymerization. The black peaks represent those with content lower than 1%, and the peaks in gray stand for column bleeding. 2-1, 2-2, and 3-3
were identified by comparing the mass spectra (MS) data with the National Institute of Standards and Technology (NIST) database, and the C4
residual of the monomer is shown by a red line. The MS comparison with NIST spectra of (b) 2-1 and 1,2-dimethylcyclohexa-1,4-diene and (c) 2-
2 and trans-5-methyl-1,3,6-heptatriene. MS data of (d) 3-2 (the most abundant trimer) and (e) 4-4 (the most abundant tetramer).
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leaving the methyl group. Upon decompression, a peak at 1652
cm−1 ascribed to ν(CC) was observed (Figure 1b),
suggesting that the subsequent reaction proceeding extensively
in the decompression. These new peaks are maintained in the
solid sample after recovery to ambient pressure (asterisk in
Figure 1b), which shows the irreversible H-transfer and
polymerization of 2-butyne, with sp C converting to sp2 C
and a part of CH3 converting to CH2 or CH. We can conclude
that 2-butyne undergoes conformational transitions above 11.9
GPa, obvious H-transfer reactions above 21.2 GPa, and
extensive polymerization during decompression.
To understand the H-transfer and the subsequent polymer-

ization, we extracted the soluble molecules (oligomers) from
the colorless PE-20 sample. High-resolution gas chromatog-
raphy mass spectrometry (HRGC−MS) with an electron
ionization (EI) source and chemical ionization (CI) was
employed to identify these oligomers, and the results are
shown in Figure 2 and Figures S3 and S4, respectively.
Nineteen compounds with content greater than 1% were
detected, including 2 dimers (C8H12), 11 trimers (C12H18), 5
tetramers (C16H24), and 1 pentamer (C20H30) as shown in
Figure 2a and Table S2. Polymers with a degree of
polymeization n from 6 to 14 were also identified with a
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF−MS) experiment on the in-
soluble solid (Figure S5). All of these molecules have a
composition of (C4H6)n, showing no hydrogen atoms or
carbon fragments such as H2, CH4, or C2H4 eliminated or
added. This is very different from the products of free radical
polymerizations, which usually have a C/H ratio slightly
different from that of reactants because the produced
intermediates often need to gain or lose a radical (such as
H·) to terminate the chain reaction and hence change the
oxidation state of carbon. For example, C4H6, C4H2, and C6H8
are detected in the hydrolysis product of the polymerized
NaC2H sample recovered from high pressure, whereas the
product would be (C2H2)n if no H· is gained or lost.20

Considering the CH2 or CH observed in the IR data, we
conclude that the PIP of 2-butyne does not result from
polymerization across neighboring triple bonds but rather
other reaction routes, including H-transfer, that need to be
identified.
For the structure of oligomers, the two dimers (2-1 and 2-2)

appearing at t = 7.25 and 7.30 min are identified as 1,2-
dimethylcyclohexa-1,4-diene and trans-5-methyl-1,3,6-hepta-
triene, respectively, by comparison with the National Institute
of Standards and Technology/Wiley (NIST) standard library
(Figure 2b,c). The C4 residuals of the monomer are recognized
in the structure of dimers as shown in Figure 2a (marked in
red). Obviously, their formation is unintelligible on the basis of
the addition polymerization of the triple bond in the alkynyl,
which would produce a C−CC(−C)−C(−C)C−C
skeleton but would be very easy if 1,3-butadiene is taken
into account. 2-1 can result from the Diels−Alder reaction
between 2-butyne and 1,3-butadiene, and 2-2 can result from
an addition reaction between two 1,3-butadiene molecules
(Figure 2a). The trimer appearing at t = 16.02 min (3-3) is
recognized as 2,3-dimethyl-1,4,4a,5,8,8a-hexahydro-
naphthalene by examining the NIST database (Figure S6),
likely resulting from the Diels−Alder reaction between 2-1 and
another 1,3-butadiene. Its mass spectrum has a strong
molecular ion peak, significantly different from those of other
trimers (Figure S7). All of the other trimers and tetramers and

the pentamer show very weak molecular ion peaks, suggesting
that they are linear or branched molecules without extended
conjugation (Figure 2d,e and Figure S7). This also excludes
the direct addition polymerization of CC bonds which
would produce conjugated CC bonds, hence suggesting that
the methyl groups are involved in the polymerization.
Considering the −CH2−/R3CH group identified in the
spectroscopic result, it is most likely that methyl donated its
hydrogen to the alkynyl, that is, intramolecular or intermo-
lecular H-transfer under high pressure.
To investigate the H-transfer pathway, we studied the crystal

structures of 2-butyne under high pressure. The lattice
parameters of phases I and II at 1.2 and 1.8 GPa were
determined by single-crystal X-ray diffraction (XRD, Table
S3). The in situ synchrotron powder XRD shows that phase II
is stable below 14.6 GPa (Figure S8a). Above that, the XRD
peaks start to broaden and become indistinguishable,
indicating the onset of amorphization/reaction, consistent
with the Raman results. Hence, the crystal structure of 2-
butyne under 12.2 GPa was investigated by Rietveld
refinement as the critical structure (Figure S8c, Table S4),
and the atomic positions were optimized by density functional
theory (DFT) calculations in the Vienna Ab Initio Simulation
Package (VASP) with the lattice parameters fixed to the
experimental data. The linear 2-butyne molecules are stacked
parallel with an inclined angle of 42° with respect to the c axis.
The closest intermolecular distance between hydrogen in
methyl group and carbon in alkynyl group (H···Csp) is inside
the layer and compressed to 2.08 Å (d1 in Figure 3a) at 12.2

GPa, which is shorter than the sum of the van der Waals
(vdW) radii of carbon and hydrogen (2.9 Å) by 0.82 Å (28%).
This indicates the presence of a very strong intermolecular
CH···π interaction,8,27,28 and is confirmed by the theoretical
calculation of the interaction region indicator (IRI).29 As
shown in Figure 3b, with increasing pressure, the intermo-
lecular interaction changes from a vdW interaction to notable

Figure 3. (a) Crystal structure of 2-butyne optimized by density
functional theory (DFT) calculations based on the experimental
lattice under 12.2 GPa (view along the b direction). (b) Intereaction
region indicator (IRI) study of chemical bonds and weak
intereactions. The blue part stands for notable attraction, the green
part stands for weak interaction, and the red part stands for the
repulsion between molecules.29 The IRI isovalue is 1.1.
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attraction (at the CH···π) and repulsion (at the center of the
six-membered ring), which indicates the possible H-transfer
route.8

A theoretical investigation of the reaction mechanism was
carried out in VASP at 0, 12, and 30 GPa. With the nudged
elastic band (NEB) calculation, we found a concerted double-
H transfer approximately along the intermolecular CH···π
interaction based on the initial state of the 2-butyne crystal;
that is, C1 donated a hydrogen to C2′ of the adjacent
molecule, and C2 accepted a hydrogen from C1′ of the same
neighbor simultaneously, going through a six-membered ring
intermediate state (6-MRIS, a snapshot of the reaction
process), −C2−C1−H−C2′−C1′−H′− (Figure 4a). This
concerted H-transfer produced 1,3-butadiene, which perfectly
explained the formation of the oligomers observed in HRGC−
MS. As shown in Figure 4b, the energy of the final state 1,3-
butadiene is significantly lower than that of 2-butyne under
high pressure, which shows that the H-transfer reaction is
thermodynamically favorable. The energy barrier of this H-
transfer reaction decreases with increasing pressure, dropping
from about 150 kJ/mol at 0 GPa to 81 kJ/mol at 30 GPa,
which is low enough for the reaction to proceed at room
temperature.
We also calculated the nucleus-independent chemical shift

(NICS) of 6-MRIS with the two H atoms at the midway point
in the transition.30,31 NICS(1)_ZZ (NICS projections onto
the normal vector of the ring plane of the atom 1 Å above the
mass center of the ring) are −15.69 ppm under 0 GPa, −23.77
ppm under 12 GPa, and −24.26 ppm under 30 GPa. In
contrast, the NICS(0)_ZZ values outside the six-membered
ring are always positive (Figure S9 and Table S5). This
indicates that the transition state of the H-transfer is aromatic
and that the aromaticity is enhanced under external pressure.
This is why such a transition becomes feasible.
The aromaticity can also be deduced from the perspective of

frontier orbitals. We calculated the molecular orbitals with the
relative positions of the molecular clusters fixed as in the
crystal using Gaussian. The distributions of the highest
occupied molecular orbital (HOMO) and HOMO − 1 (the
first orbital below HOMO) of 6-MRIS at 30 GPa are shown in
Figure 4c,d. HOMO has little to do with the discussed state
and is not considered. The HOMO − 1 on the six-membered
ring has two nodes, indicating that it is a Hückel system. Six

electrons, including two π electrons (one from each molecule
on average) and four σ electrons from the two C−H σ bonds,
participated in this transfer process and satisfied the 4n + 2 rule
for an aromatic transition state. In the literature, similar
sigmatropic H-transfer was studied theoretically, such as the
synchronous [σ2s + σ2s + π2s] suprafacial double H-transfer
from ethane to ethylene, and our study recognized this reaction
of hydrocarbons under high pressure for the first time.32

At ambient pressure, the isomerization of C4H6 species
occurs under base-catalyzed and combustion conditions.33−36

In combustion chemistry, isomerization as an important
intermediate process has attracted much attention.34−39 A
series of pyrolysis experiments of C4H6 species implied that
fast isomerization occurs prior to C−C bond cleavage.37,38

These unimolecular and H-assisted isomerizations require high
temperature to overcome the high energy barrier.34,35,39 Here
we found that, under high pressure, isomerization can also be
realized via intermolecular H-transfer at room temperature.
In conclusion, the H-transfer from CH3 to CC via the C−

H···π route in solid 2-butyne under high-pressure and room-
temperature conditions was confirmed by vibrational spectros-
copy, HRGC−MS, in situ XRD, and a theoretical simulation. A
concerted intermolecular two-in−two-out H-transfer path via
an aromatic [4n + 2] Hückel transition state was concluded.
The suitable molecular conformation and the short H···Csp
distance are the keys to inducing this double H-transfer
reaction. Our studies highlight the fact that the inert methyl
group can be activated by alkynyl under high pressure through
the C−H···π route, providing novel insights for understanding
the conversion of C−H compounds under extreme conditions.
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and DFT calculations (PDF)

Figure 4. (a) H-transfer process of 2-butyne along d1 in the NEB calculation. (b) Energy barrier vs image number of H-transfer under 0, 12, and 30
GPa. (c) HOMO and (d) HOMO − 1 of a six-membered ring intermediate state of H-transfer under 30 GPa.
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