High-temperature superconductivity below 100 GPa in ternary C-based hydride MC_2H_8 with molecular crystal characteristics (M = Na, K, Mg, Al, and Ga)

Meng-Jing Jiang,^{1,2} Yu-Long Hai,^{1,2} Hui-Li Tian,^{1,2} Han-Bin Ding,^{1,2} Yu-Jie Feng,^{1,2} Chun-Lei Yang,^{1,3,*} Xiao-Jia Chen^(a),^{4,5,†} and Guo-Hua Zhong^(a),^{3,‡}

¹Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

²Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China

³University of Chinese Academy of Sciences, Beijing 100049, China

⁴School of Science, Harbin Institute of Technology, Shenzhen 518055, China

⁵Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

(Received 8 November 2021; revised 8 March 2022; accepted 18 March 2022; published 28 March 2022)

To explore the high-temperature superconductivity of hydrogen-rich compounds at low pressures, we have investigated the crystal structures, electronic and dynamical properties, electron-phonon interactions, and possible superconductivity of the ternary hydride MC_2H_8 (M = Na, K, Mg, Al, and Ga) in the low-pressure range of 0–100 GPa based on the first-principles calculations. The results show that there is no imaginary frequency in phonon spectra for MC_2H_8 at selected pressures which indicates that MC_2H_8 is dynamically stable. Furthermore, according to the Eliashberg spectral function under pressures, MC_2H_8 is predicted to be superconducting at low pressure. Especially, the superconducting critical temperature (T_c) of MgC_2H_8 is higher than 55 K at 40 GPa and the T_c in AlC_2H_8 reaches 67 K at 80 GPa. Electronic and phonon states and the electron-phonon interactions show that H has a considerable contribution to this ternary hydride superconductor and suggest that increasing the contribution of H to total electron-phonon coupling is a way to design materials with high T_c . Our study shows that it is one of the feasible routes to explore the low-pressure and high-temperature superconductivity in ternary carbon-based hydrides.

DOI: 10.1103/PhysRevB.105.104511

I. INTRODUCTION

Remarkable success has been achieved in exploring highand room-temperature superconductivity in binary hydrides. The superconducting transition temperature (T_c) observed in the experiment has approached or exceeded zero °C. For example, T_c of 203 K was observed in sulfur hydride at 155 GPa [1], 250-260 K was observed in lanthanum hydride at 180–170 GPa [2,3], 262 K in yttrium superhydride at 182 GPa [4], 243 K in yttrium hydride at 201 GPa [5], and 224 K in YH₆ at 166 GPa [6]. However, a problem that can not be ignored is that the pressure conditions required to produce such a superconducting critical temperature are very harsh. The binary hydrides mentioned above usually exist stably and exhibit high-temperature superconductivity at a high pressure above 150 GPa. Such harsh experimental conditions will limit the application of hydride superconductors. Hence, it is very necessary to explore hydride superconductors with high- T_c value at low pressures such as below 100 GPa.

Compared with binary hydrides, ternary hydrides, especially MA_xH_y -type ternary hydrides in which M and A represent metal and main group nonmetallic elements, have been considered as the promising candidates of high- T_c

low-pressure superconductors since the superconductivity of $T_c \sim 150 \,\mathrm{K}$ was predicted at 12 GPa in KB₂H₈ [7]. Focused on pressure equal to or lower than 100 GPa, many important theoretical predictions on MA_xH_y have been carried out [7-18]. In particular, when A is carbon element, the hydrocarbon sublattice can been formed in the crystal MC_rH_v , which is the significant structure characteristics in materials and is also one of the most desirable structures to obtain superconductivity. When the quasimolecule form of methane (CH₄) was formed in MC_xH_y , Tian *et al.* reported that T_c in MgCH₄ with P4/nmm symmetry reaches 84 K at 75 GPa [8]. However, the stability of $MgCH_4$ could not be checked. Subsequently, some of the authors of this paper predicted the stable structures of KCH₄ [10], BeCH₄ [11], $Li_x(CH_4)_{1-x}$ [12], and $Ba_x(CH_4)_{1-x}$ [18] with containing quasimolecule of CH₄, and also suggested that the systems can exhibit metallic behavior and superconductivity at low pressures such as 5 and 10 GPa. For example, T_c of $Amm2 - Ba(CH_4)_3$ exceeds 24 K at 20 GPa, and increases to 43.7 K at 90 GPa [18]. Those studies show that ternary hydride MC_xH_y with molecular crystal characteristics can be metallized at low pressures and exhibits the high-temperature superconductivity.

From the reported results, however, the T_c of ternary hydride is still lower than that of binary hydride, although the low-pressure superconductivity is realized. Hence, improving the T_c , more MC_xH_y -type ternary hydride superconductors need to be explored, or more studies on MC_xH_y are needed. In this work, therefore, we choose MC_2H_8 ternary

^{*}cl.yang@siat.ac.cn

[†]xjchen@hpstar.ac.cn

^{*}gh.zhong@siat.ac.cn

hydride with CH₄ molecular characteristics to explore the low-pressure and high-temperature superconductivity, based on the first-principles calculations. MC2H8 can be regarded as a metal-doped CH₄ molecular solid, with the $Fm\bar{3}m$ space group. At the same time, methane is the simplest of saturated hydrocarbons and one of the most abundant organic molecules in the universe. It is of great significance to study the metallization and superconductivity of methane solid. Differing from P4/nmm of MgCH₄ [8], $P2_1/m$ of KCH₄ [10], P1 of BeCH₄ [11], P2₁ of Li(CH₄)₄ [12], and Amm2 of Ba(CH₄)₃ [18], the doping concentration of metal in MC_2H_8 is reduced by half. Here, investigating the crystal structures, electronic states, and electron-phonon interactions of MC_2H_8 (M = Na, K, Mg, Al, and Ga) at the low-pressure range of 0-100 GPa, we predict that T_c of MgC₂H₈ is higher than 55 K at 40 GPa and T_c of AlC₂H₈ can reach 67 K at 80 GPa. The higher superconducting transition temperature is obtained in MC_2H_8 ternary hydride.

II. COMPUTATIONAL DETAILS

In this work, we referred to the structural feature of KB₂H₈ [7] and constructed the crystal structure of MC_2H_8 (M = Na, K, Mg, Al, and Ga). Selected typical pressure points of 0, 20, 40, 60, and 80 GPa, we performed the structural optimizations and self-consistent energy calculation by using Vienna *ab initio* simulation package (VASP) [19,20] based on the exchange-correlation functional of generalized gradient approximation (GGA) in version of Perdew-Burke-Ernzerhof (PBE) [21] and projector augmented wave pseudopotentials [22]. The plane-wave cutoff energy was set as 600 eV. In the optimization process, convergence thresholds were set as 10^{-5} eV in energy and 10^{-3} eV/Å in force. The *k*-point interval distribution of Monkhorst-Pack was 0.04 Å⁻¹ for structural optimization and 0.02 Å⁻¹ for self-consistent energy calculation, respectively.

The phonon frequencies and electron-phonon interactions were calculated by employing the QUANTUM ESPRESSO package (QE) [23,24]. The cutoff energies of 80 Ry were used for wave functions. In both VASP and QE codes, the same functional was selected. Forces and stresses for the converged structures were optimized and checked to be within the error allowance of the VASP and QE codes. Based on the calculated Eliashberg spectral function $[\alpha^2 F(\omega)]$

$$\alpha^2 F(\omega) = \frac{1}{2\pi N(0)} \sum_{Q\nu} \frac{\gamma_{Q\nu}}{\omega_{Q\nu}} \delta(\omega - \omega_{Q\nu}), \qquad (1)$$

the electron-phonon coupling constant (λ) is obtained:

$$\lambda = 2 \int_0^\infty \frac{\alpha^2 F(\omega)}{\omega} d\omega.$$
 (2)

Furthermore, T_c was estimated by the Allen-Dynes–corrected McMillan equation [25], expressed as

$$T_{\rm c} = f_1 f_2 \frac{\omega_{\rm log}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right].$$
 (3)

In the modified McMillan equation, μ^{\star} represents the Coulomb pseudopotential which was taken as 0.1 in our calculations. ω_{\log} is the logarithmic average of phonon

frequency:

$$\omega_{\log} = \exp\left[\frac{2}{\lambda} \int_0^\infty \frac{\alpha^2 F(\omega) \log(\omega)}{\omega} d\omega\right].$$
 (4)

The factor $f_1 f_2$ depends on the λ , μ^* , ω_{\log} , and mean-square frequency ($\overline{\omega_2}$) [25].

III. RESULTS AND DISCUSSION

Starting from the optimized crystal structures, the enthalpy of formation of MC_2H_8 is compared with several possible decomposition enthalpies. The structures of each decomposition product are taken from previous studies: Na $(P6_3/mmc)$ and $Fm\bar{3}m$ [26,27], NaC (*Immm*) [28], K (P6₃/mmc, $Fm\bar{3}m$, and $Im\bar{3}m$ [27,29,30], KC₂ (P4/nmm) [31], KH ($Fm\bar{3}m$) [32], KH₃ (*I*4/*mmm*) [27], KCH₄ (*R*3*m* and *P*2₁/*m*) [10], Mg $(Im\bar{3}m)$ [33], MgC₂ (P4₂/mnm) [34], MgH₂ ($Fm\bar{3}m$) [35], MgCH₄ (*Pban* and *P*4/*nmm*) [8], Al (*Fm* $\bar{3}m$) [36], AlH₃ $(Fd\bar{3}m)[37]$, Al₄C₃ $(R\bar{3}m)[38]$, Ga (*Cmcm* and *I*4/*mmm*) [39,40], GaC ((P6₃mc) [27], GaH (P6₃mc) [27], GaH₃ (I4/mmm) [27], C (Fmmm and P6₃/mmc) [27], CH₂ (Cmcm) [41], CH₄ ($P2_1/c$) [41], and H₂ ($P6_3/m$) [42]. Calculated enthalpy difference versus pressure for MC₂H₈ is shown in Fig. 1. As shown in Figs. 1(a) and 1(e), when the pressure is larger than 20 GPa, the enthalpy values of NaC₂H₈ and GaC₂H₈ are lower than those of their possible decomposition forms, which means that NaC₂H₈ and GaC₂H₈ are thermodynamically stable above 20 GPa. Comparing with the possible decomposition enthalpies, we can see that both KC₂H₈ and AlC₂H₈ can stably exist in the whole pressure range considered [Figs. 1(b) and 1(d)], while MgC₂H₈ is thermodynamically stable only below 40 GPa. Moreover, for $MC_{2}H_{8}$ (M = Na, K, Mg, Al, and Ga), the metallization and dynamical stability were also examined in the pressure range of 0-100 GPa, the results are presented in Figs. S1-S10 of the Supplemental Material (SM) [43]. If no imaginary frequency is observed, the system is dynamically stable.

When MC_2H_8 satisfying the conditions of metallization and thermodynamic and dynamical stabilities, we calculated its electron-phonon coupling constant λ and logarithmic average of phonon frequency ω_{\log} and estimated its superconducting critical temperature T_c . Figure 2 shows the dependence of T_c , λ , and ω_{\log} on pressure for MC_2H_8 (M =Na, K, Mg, Al, and Ga). As reflected in Eq. (3), T_c is competitively determined by λ and ω_{log} . Under the symmetry of $Fm\bar{3}m$ space group, it was found that the monovalent metaldoped cases NaC_2H_8 and KC_2H_8 lead to the relatively low- λ and $-T_c$ values, which are less than 0.7 and 30 K in the pressure range of 0–100 GPa, respectively. NaC₂H₈ and KC₂H₈ are comparable with Li(CH₄)₄ [12] and KCH₄ [10] in the superconductivity. And KC₂H₈ can only stabilize above 50 GPa. Interestingly, MgC₂H₈, AlC₂H₈, and GaKC₂H₈ exhibit the high superconductivity below 50 GPa. For example, the T_c of MgC₂H₈ rapidly increases with the increase of pressure and reaches 55 K at 40 GPa, though it is not stable above 50 GPa. Both AlC₂H₈ and GaKC₂H₈ are stable and superconductive in the considered pressure range of 0-100 GPa. These two systems have the T_c higher than 50 K below 60 GPa, however, the T_c of AlC₂H₈ continues to increase with the pressure and reaches 67 K at 80 GPa, while the T_c of GaC₂H₈ decreases

FIG. 1. Calculated enthalpy difference versus pressure for MC_2H_8 , referenced to the decomposition enthalpy into element phase of $M + 2C + 4H_2$. The other possible decomposition enthalpies were considered. (a)–(e) Correspond to NaC₂H₈, KC₂H₈, MgC₂H₈, AlC₂H₈, and GaC₂H₈, respectively.

with the pressure after 60 GPa. Comparing with our previous studies on Li(CH₄)₄ [12], KCH₄ [10], BeCH₄ [11], and Ba(CH₄)₃ [18], MC_2H_8 creates the bigger ω_{log} value at the same pressure, which is just reason of that it has higher T_c . However, the λ of MC_2H_8 is less than those of KB₂H₈ [7] and LaBH₈ [13,14], though MC_2H_8 has bigger ω_{log} . In addition, comparing with the λ close to 2 or greater than 2 in binary hydride, the λ of MC_2H_8 is relatively low and difficult to exceed 1. Hence, further improving the electron-phonon interaction is the main means to improve the T_c of MC_2H_8 . But, it is worth noting that the T_c of MC_2H_8 does not increase or decrease monotonically with the increase of pressure. From Eq. (3), T_c is determined by λ and ω_{\log} , and both of them are related to $\alpha^2 F(\omega)$. Namely, the superconductivity is determined by both electronic and phonon states. Although the phonon frequency changes gradually with the increase of pressure as shown in Figs. S6– S10 [43], the value of density of states (DOS) at Fermi level does not vary monotonically with the increase of pressure from the electronic structures shown in Figs. S1-S5 [43], which leads to the nonmonotonic change of T_c of $MC_{2}H_{8}$. Next, we will understand the $MC_{2}H_{8}$ superconductor from the perspective of crystal structure, electronic characteristics, and electron-phonon coupling in the cases of MgC₂H₈ and AlC₂H₈.

 MC_2H_8 has the $Fm\bar{3}m$ symmetry which is a common space group in hydrides with high T_c . M, C, and H atoms occupy the 4a (0.000, 0.000, 0.000), 8c (0.250, 0.250, 0.250), and 32f (0.360 $\pm u$, 0.360 $\pm u$, 0.360 $\pm u$) Wyckoff positions, respectively. The u value is affected by pressure and doped metal. The crystal structures in the cases of MgC₂H₈ and AlC₂H₈ are shown in Figs. 3(a) and 4(a), respectively. The CH₄ tetrahedrons are formed between C and H atoms, namely, methane quasimolecules, and there are eight CH₄ molecules in the unit cell of MC_2H_8 . From electron localization function (ELF) shown in Figs. 3(b) and 4(b), the bonding between different CH₄ quasimolecules is neither the covalent bond nor the ionic bond, but a weak intermolecular force. During pressurization, MC_2H_8 has always maintained the molecular crystal characteristics, and the intermolecular interaction between two CH₄ quasimolecules increases. In order to evaluate whether CH₄ will rotate in the system, we designed a hypothetical structure so that CH₄ quasimolecule has an arbitrary rotation. In the case of MgC₂H₈ (at 40 GPa) and AlC₂H₈ (at 80 GPa) as shown in Fig. S11 [43], it was found that the total energy increases when the CH₄ molecules rotate. After rotating, as shown in Table S1 [43], the total energy increased by 0.11 and 0.34 eV/f.u. for MgC₂H₈ (at 40 GPa) and AlC₂H₈ (at 80 GPa), respectively. This indicates that CH₄ molecules are not easy to rotate, especially under high pressure.

The C-H bonding lengths in MgC_2H_8 (at 40 GPa) and AlC_2H_8 (at 80 GPa) are, respectively, 1.124 and 1.115 Å, which are less than 1.227 Å of B-H bond in KB₂H₈ at 12 GPa [7] and 1.33 Å of B-H bond in LaBH₈ at 150 GPa [14], obviously shorter than the 1.546 Å of S-H bond in in SH₃ at 150 GPa [44]. From ELFs shown in Figs. 3(b) and Fig. 4(b), a strong polar covalent bond is formed between C and H atoms, which is the main reason for the stable existence of CH₄ at low pressure. In addition, the charge transfer occurs from metal atom to CH₄ molecules. Comparing MgC₂H₈ (at 40 GPa) with AlC_2H_8 (at 80 GPa), the ionic character between metal and CH₄ is slightly different, which may depend on the valence state and electronegativity of the metal. The charge transfer was examined by calculating Bader charge [45,46]. Table S2 [43] presents the transferred charge from M to CH₄ at different pressure for MC_2H_8 . The transferred charges from M to CH₄ are 1.52 e/Mg and 1.65 e/Al in MgC₂H₈ (at 40 GPa) and AlC₂H₈ (at 80 GPa), respectively. In fact, the charge is transferred to C atoms from metal. In NaC₂H₈, KC₂H₈, and

FIG. 2. The calculated superconducting critical temperature T_c , electron-phonon coupling constant λ , and logarithmic average of phonon frequency ω_{log} for NaC₂H₈, KC₂H₈, MgC₂H₈, AlC₂H₈, and GaC₂H₈ change with the pressure.

 GaC_2H_8 , the relatively less charge is also transferred to C atoms, which are 0.74 e/Na at 60 GPa, 0.69 e/Na at 100 GPa, and 0.66 e/Ga at 60 GPa, respectively. This difference in charge transfer leads to differences in electronic states.

Methane solid is a wide-gap semiconductor with a band gap of 7.7 eV at ambient pressure [47], and the band gap of methane will not close until 500 GPa at room temperature [41,47–49]. However, previous theoretical studies have predicted that the metal-doped methane can become to metal at low pressure [8,10–12,18]. In this work, we further confirmed this point. Due to the charge transfer from metal to CH₄ molecules, MC_2H_8 realizes the metallization at the considered low-pressure range of 10–100 GPa. For MgC₂H₈ at 40 GPa as shown in Figs. 3(c) and 3(d), four bands cross the Fermi level to form the complex Fermi-surface (FS) sheets such as holelike FS around the *L* point and electronlike FS around the *W* and Γ points. With the same space group, AlC₂H₈ at 80 GPa has four bands crossing the Fermi level as shown in Fig. 4(c). Due to the metallization from charge transfer, there is the similar character between MgC₂H₈ and AlC₂H₈, which are the increase of Fermi level caused by charge transfer. Only because of the different electronegativity and valence states of metals, the amount of charge transfer is different which results in that the shift of Fermi level is different. The relative movement of the energy bands leads to the change of the size and shape of the electronlike and holelike FSs. Hence, the shape of FSs is different between MgC_2H_8 and AlC_2H_8 . At the same time, the pressure will also cause the shift of the Fermi level, resulting in the change of the number of FSs. For example, at 20 GPa, there are two bands crossing the Fermi level and forming the FSs in MgC₂H₈ (Fig. S13 [43]), while three bands cross the Fermi level and form the FSs in AlC_2H_8 (Fig. S14 [43]). In addition, the pressure will expand the electronic state, so the energy gap will decrease with the increase of pressure. For example, an energy gap of 1.2 eV around -5 eV in Mg₂H₈ at 40 GPa will disappear in Al₂H₈ at 80 GPa, as shown in Figs. 3(c) and Fig. 4(c).

From the projected DOS on atomic orbitals, the electronic states near the Fermi level mainly come from C-2p, but the contribution of Mg-s, p (Al-s, p) and H-s to FS is also considerable. Focusing on the DOS values at Fermi level, the results of MC_2H_8 are presented in Table S3 [43]. As a result, the DOS values at Fermi level reach 0.78 and 0.91 states/eV/f.u. in MgC₂H₈ at 40 GPa and AlC₂H₈ at 80 GPa, respectively. This result of density of electronic states at Fermi level is larger than 0.4 states/eV/f.u. of SH₃ at 200 GPa [50], 0.52 states/eV of LaBH₈ at 50 GPa [13], 0.60 states/eV of KB_2H_8 at 12 GPa [7], and 0.50 states/eV/f.u. of Li(CH₄)₄ at 100 GPa [12], comparable with 0.75 states/eV/f.u. of LaH_{10} at 250 GPa [51], 0.87 states/eV/f.u. of MgCH₄ at 90 GPa [8], and 0.90 states/eV/f.u. of BeCH₄ at 80 GPa [11], slightly less than 1.57 states/eV/f.u. of KCH₄ at 80 GPa [10] and 1.44 states/eV/f.u. of Ba(CH₄)₃ at 90 GPa [18]. With regard to pressure effect, the DOS values at Fermi level for MgC₂H₈ and AlC₂H₈ are different at different pressures. As shown in Fig. S3 [43], the DOS value at Fermi level at the pressure with the highest T_c is not the largest for MgC₂H₈. The similar situation was also observed in AlC₂H₈ as shown in Fig. S4 [43]. In addition, as shown in Table S1 and Fig. S12 [43], at low pressure, the DOS value at Fermi level changes obviously due to the rotation of CH₄ molecules, which is related to the easier rotation of molecules at low pressure. On the contrary, at high pressure, the DOS value at Fermi level caused by molecular rotation changes little. Other metals such as Na-, K-, and Ga-doped cases, the electronic DOSs exhibit the metallic feature, and the relative big DOS values at Fermi level are obtained in NaC₂H₈, KC₂H₈, and GaC₂H₈ (see Figs. S1, S2, and S5 [43]). The phonon structures including phonon spectra and phonon density of states (PhDOS) shown in Fig. 5 present the difference between MgC₂H₈ at 40 GPa and AlC₂H₈ at 80 GPa. Comparing with the Raman spectrum of pure CH₄ solid [52–58], the phonon frequencies of MgC_2H_8 and AlC_2H_8 at gamma are reduced in the high-frequency region, which is mainly because the vibration frequency of the system is weakened after metal doping to form crystals. Although metal doping forms a new crystal structure, the vibrational modes of atoms and molecules still retain some characteristics. For MgC₂H₈ at 40 GPa, referring to the Raman modes of CH₄ solid [52–58], the phonon spectra MgC_2H_8 can be divided

FIG. 3. (a) Optimized crystal structure, (b) the two-dimensional electron localization function in (101) plane, (c) the electronic band structures and projected density of states (DOS) on atomic orbitals where the Fermi level is set as zero, (d) the Fermi-surface features corresponding to four energy bands crossing the Fermi level of MgC_2H_8 at 40 GPa.

FIG. 4. (a) Optimized crystal structure, (b) the two-dimensional electron localization function in (101) plane, (c) the electronic band structures and projected density of states (DOS) on atomic orbitals where the Fermi level is set as zero, (d) the Fermi-surface features corresponding to four energy bands crossing the Fermi level of AlC_2H_8 at 80 GPa.

FIG. 5. The calculated (a) phonon spectra, (b) phonon density of states (PhDOS), (c) Eliashberg spectral function $\alpha^2 F(\omega)$, and electronphonon coupling integral $\lambda(\omega)$ of MgC₂H₈ at 40 GPa. And the calculated (d) phonon spectra, (e) phonon density of states (PhDOS), and (f) Eliashberg spectral function $\alpha^2 F(\omega)$, and electron-phonon coupling integral $\lambda(\omega)$ of AlC₂H₈ at 80 GPa.

into three parts according to the contribution of elements. In H-dominated region, the high-frequency modes in the range of 2346–2644 cm⁻¹ mainly come from the stretching vibrations of C-H bonds in CH₄ molecules, the middle-frequency modes in the range of 1187-1402 cm⁻¹ derive from the bending vibrations of C-H bonds in CH₄ molecules. The vibration modes of Mg atoms are all localized in the lowfrequency region of $0-300 \text{ cm}^{-1}$. In the frequency region of $0-1025 \text{ cm}^{-1}$, the CH₄ molecular vibrations contribute most of phonon modes, which mainly results from the couplings between CH₄ and CH₄ and between CH₄ and Mg. For AlC₂H₈ at 80 GPa, the pressure makes H phonons shift towards higher frequency and enable phonon band broadening. The stretching vibration of C-H bonds in CH₄ makes phonon in the frequency region $2466-2715 \text{ cm}^{-1}$. The bending modes from C-H bonds distribute in the bigger frequency region of 831–1413 cm⁻¹. However, the pressure makes CH₄ molecular vibrations weak, narrowing the frequency to a small range of $0-830 \text{ cm}^{-1}$.

Combining electronic with phonon states, the electronphonon interactions were analyzed by calculating the Eliashberg spectral function $\alpha^2 F(\omega)$. Then, the electronphonon coupling constant λ was obtained based on the $\alpha^2 F(\omega)$. As shown in Fig. 5, the total λ is 0.79 for MgC₂H₈ at 40 GPa and 1.01 for AlC₂H₈ at 80 GPa, respectively. In MgC₂H₈, the contribution of Mg (by charge transfer) to total λ is about 19%, the contribution of CH₄ – CH₄ coupling is about 29%, while the contribution of H atoms reaches 52%. In AlC₂H₈, as a comparison, the contribution of Al (by charge transfer) to total λ is about 29%, the contribution of CH₄ – CH₄ coupling is about 20%, the contribution of H atoms is still more than 51%. From these results, hydrogen dominates the electron-phonon coupling interaction in MC_2H_8 , not carbon, which is similar to KB₂H₈, MgCH₄ [8], and Ba(CH₄)₃ [18], while it is different from Li(CH)₄ [12], KCH₄ [10], and BeCH₄ [11]. For other MC_2H_8 systems with lower T_c , such as NaCH₄ and KCH₄, the contribution of H to total λ is obviously less than 50%, which for GaCH₄ with high T_c , the contribution of H to total λ reaches 52%, also more than 50% (see Fig. S15 [43]). By comparing the T_c with λ values of these ternary hydrides, we can conclude that increasing the contribution of H to electron-phonon coupling is a way to design materials with high T_c .

IV. CONCLUSION

In summary, for $Fm\bar{3}m - MC_2H_8$ (M = K, Mg, Na, Al, and Ga), we have investigated their crystal structures, electronic states, phonon spectra, and electron-phonon interactions at selected low pressures based on the density functional theory and density functional perturbation theory. The metallization and possible superconductivity were analyzed. We found that MC_2H_8 maintains the molecular crystal characteristics, with a strong coupling between the C-H covalent bonds, while the metallization can be achieved by doping at selected low pressures. The absence of imaginary frequency in the calculated phonon spectra suggests that this MC_2H_8 structure is dynamically stable. The electron-phonon coupling

calculations reveal that NaC₂H₈, KC₂H₈, MgC₂H₈, AlC₂H₈, and GaC₂H₈ are all good BCS superconductors. Especially, the T_c of MgC₂H₈ can increase to 55 K at 40 GPa from 13.4 K at 20 GPa, and the T_c of AlC₂H₈ can reach 67 K at 80 GPa. Electronic states, phonon spectra, and the integral to Eliashberg spectral function show that H has a considerable contribution to the electron-phonon interaction in MgC₂H₈, AlC₂H₈, AlC₂H₈, and GaC₂H₈ superconductors and indicate that increasing the contribution of H to electron-phonon coupling is a way to design materials with high T_c .

- A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature (London) 525, 73 (2015).
- [2] A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature (London) 569, 528 (2019).
- [3] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).
- [4] E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, Phys. Rev. Lett. **126**, 117003 (2021).
- [5] P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, Nat. Commun. 12, 5075 (2021).
- [6] I. A. Troyan, D. V. Semenok, A. G. Kvashnin, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, A. G. Ivanova, V. B. Prakapenka, E. Greenberg, A. G. Gavriliuk, I. S. Lyubutin, V. V. Struzhkin, A. Bergara, I. Errea, R. Bianco, M. Calandra, F. Mauri, L. Monacelli, R. Akashi, and A. R. Oganov, Adv. Mater. 33, 2006832 (2021).
- [7] M. Gao, X.-W. Yan, Z.-Y. Lu, and T. Xiang, Phys. Rev. B 104, L100504 (2021).
- [8] F. Tian, D. Li, D. Duan, X. Sha, Y. Liu, T. Yang, B. Liu, and T. Cui, Mater. Res. Express 2, 046001 (2015).
- [9] C. Kokail, W. von der Linden, and L. Boeri, Phys. Rev. Mater. 1, 074803 (2017).
- [10] J.-X. Han, H. Zhang, and G.-H. Zhong, Int. J. Mod. Phys. C 30, 1950061 (2019).
- [11] H.-Y. Lv, S.-Y. Zhang, M.-H. Li, Y.-L. Hai, N. Lu, W.-J. Li, and G.-H. Zhong, Phys. Chem. Chem. Phys. 22, 1069 (2020).
- [12] N. Lu, Y.-L. Hai, H.-Y. Lv, W.-J. Li, C.-L. Yang, and G.-H. Zhong, Int. J. Mod. Phys. C 32, 2150032 (2021).
- [13] S. Di Cataldo, C. Heil, W. von der Linden, and L. Boeri, Phys. Rev. B 104, L020511 (2021).
- [14] X. Liang, A. Bergara, X. Wei, X. Song, L. Wang, R. Sun, H. Liu, R. J. Hemley, L. Wang, G. Gao, and Y. Tian, Phys. Rev. B 104, 134501 (2021).
- [15] A. P. Durajski and R. Szczesniak, Phys. Chem. Chem. Phys. 23, 25070 (2021).
- [16] W.-H. Yang, W.-C. Lu, W. Qin, H.-J. Sun, X.-Y. Xue, K. M. Ho, and C. Z. Wang, Phys. Rev. B 104, 174106 (2021).
- [17] R. Lucrezi, S. Di Cataldo, W. von der Linden, L. Boeri, and C. Heil, arXiv:2112.02131.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant No. 12074401) and the Shenzhen Science and Technology Program (Grants No. JCYJ20180507182445460, No. JCYJ20200109112810241, and No. KQTD20200820113045081). This work was also supported by the SIAT-CUHK Joint Laboratory of Photovoltaic Solar Energy. The calculations were performed in HPC Lab, National Supercomputing Center in Shenzhen.

- [18] M.-J. Jiang, H.-L. Tian, Y.-L. Hai, N. Lu, P.-F. Tong, S.-Y. Wu, W.-J. Li, C.-L. Yang, and G.-H. Zhong, ACS Appl. Electron. Mater. 3, 4172 (2021).
- [19] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).
- [20] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- [21] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [22] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- [23] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri *et al.*, J. Phys.: Condens. Matter **21**, 395502 (2009).
- [24] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo *et al.*, J. Phys.: Condens. Matter 29, 465901 (2017).
- [25] P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
- [26] C. S. Barrett, Acta Crystallogr. 9, 671 (1956).
- [27] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013).
- [28] K.-H. Klöss, D. Hinz-Hübner, and U. Ruschewitz, Z. Anorg. Allg. Chem. 628, 2701 (2002).
- [29] L.-G. Liu, J. Phys. Chem. Solids 47, 1067 (1986).
- [30] A. Simon, W. Bramer, B. Hillenkoetter, and H. J. Kullmann, Z. Anorg. Allg. Chem. 419, 253 (1976).
- [31] H. Föeppl, Angew. Chem. 70, 401 (1958).
- [32] M. Fatmi, B. Ghebouli, M. A. Ghebouli, A. Bouhemadou, and S. Binomran, J. Phys. Chem. Solids 73, 1 (2012).
- [33] P. Li, G. Gao, Y. Wang, and Y. Ma, J. Phys. Chem. C 114, 21745 (2010).
- [34] P. Karen, A. Kjekshus, Q. Huang, and V. L. Karen, J. Alloys Compd. 282, 72 (1999).
- [35] D. Moser, D. J. Bull, T. Sato, D. Noréus, D. Kyoi, T. Sakai, N. Kitamura, H. Yusa, T. Taniguchi, W. P. Kalisvaart, and P. Notten, J. Mater. Chem. **19**, 8150 (2009).
- [36] A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, Phys. Rev. B 64, 045208 (2001).
- [37] P. Vajeeston, P. Ravindran, and H. Fjellvåg, J. Alloys Compd. 509, S662 (2011).
- [38] S. Sridharan and H. Nowotny, Int. J. Mater. Res. 74, 468 (1983).
- [39] M. de Koning, A. Antonelli, and D. A. C. Jara, Phys. Rev. B 80, 045209 (2009).

- [40] L. Bosio, J. Chem. Phys. 68, 1221 (1978).
- [41] A. S. Naumova, S. V. Lepeshkin, and A. R. Oganov, J. Phys. Chem. C 123, 20497 (2019).
- [42] C. J. Pickard and R. J. Needs, Nat. Phys. 3, 473 (2007).
- [43] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.105.104511 for electronic density of states and phonon spectra of MC_2H_8 at selected pressures, total energy, and electronic structure change with respect to the rotation of CH₄ quasimolecules, the number of Fermi surface changing with the pressure, the DOS values at Fermi level for MC_2H_8 at different pressures, the calculated Eliashberg spectral function $\alpha^2 F(\omega)$, and electron-phonon coupling integral $\lambda(\omega)$ for NaC₂H₈ at 60 GPa, KC₂H₈ at 100 GPa, and GaC₂H₈ at 60 GPa, and structural parameters of MC_2H_8 in format of POSCAR files.
- [44] M. Einaga, M. Sakata, T. Ishikawa, K. Shimizu, M. I. Eremets, A. P. Drozdov, I. A. Troyan, N. Hirao, and Y. Ohishi, Nat. Phys. 12, 835 (2016).
- [45] G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).
- [46] M. Yu and D. R. Trinkle, J. Chem. Phys. 134, 064111 (2011).

- [47] M. Martinez-Canales and A. Bergara, High Press. Res. 26, 369 (2006).
- [48] L. L. Sun, Z. X. Zhao, A. L. Ruoff, C. D. Zha, and G. Stupian, J. Phys.: Condens. Matter 19, 425206 (2007).
- [49] G. Gao, A. R. Oganov, Y. Ma, H. Wang, P. Li, Y. Li, T. Iitaka, and G. Zou, J. Chem. Phys. 133, 144508 (2010).
- [50] D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Sci. Rep. 4, 6968 (2015).
- [51] H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Proc. Natl. Acad. Sci. USA 114, 6990 (2017).
- [52] A. Anderson and R. Savoie, J. Chem. Phys. 43, 3468 (1965).
- [53] A. Cabana and N. D. Thé, Can. J. Chem. 55, 3862 (1977).
- [54] K. Kobashi, K. Okada, and T. Yamamoto, J. Chem. Phys. 66, 5568 (1977).
- [55] F. D. Medina and W. B. Daniels, J. Chem. Phys. **70**, 2688 (1979).
- [56] F. D. Medina and W. B. Daniels, J. Chem. Phys. 70, 242 (1979).
- [57] D. Fabre, M. M. Thiéry, and K. Kobashi, J. Chem. Phys. 76, 4817 (1982).
- [58] G. Millot, B. Lavorel, and J. I. Steinfeld, J. Chem. Phys. 95, 7938 (1991).