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a b s t r a c t

SnTe is a promising Pb-free thermoelectric (TE) material with high electrical conductivity. We discovered
the synergistic effect of Bi2O3 on enhancing the average power factor (PF) and overall ZT value of the
SnTe-based thermoelectric material. The introduction of Bi2O3 forms plenty of SnO2, Bi2O3, and Bi-rich
nanoprecipitates. These interfaces between the SnTe matrix and the nanoprecipitates can enhance the
average PF through the energy filtering effect. On the other hand, abundant and diverse nanoprecipitates
can significantly diminish the lattice thermal conductivity (klat) through enhanced phonon scattering.
The synergistic effect of Bi2O3 resulted in a maximum ZT (ZTmax) value of 0.9 at SnTe-2% Bi2O3 and an
average ZT (ZTave) value of 0.4 for SnTe-4% Bi2O3 from 300 K to 823 K. The work provides an excellent
reference to develop non-toxic high-performance TE materials.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the increasing energy shortage crisis, scientific re-
searchers are eager to find newenergy sources and technologies. TE
materials can convert heat into electricity directly, providing a
promising path to easing the fossil energy shortage [1e6]. Ther-
moelectric materials have been widely applied to various fields,
such as waste heat recovery, deep space probes, wearable devices,
chip cooling. The energy conversion efficiency of TE materials can
be evaluated by the figure-of-merit ZT, ZT¼ sS2T/(keleþklat), where s
is the electrical conductivity; S is the Seebeck coefficient; T is the
Calvin temperature; kele is the electronic thermal conductivity; klat
is the lattice thermal conductivity. In order to achieve high ther-
moelectric performance, it is necessary to obtain high PF while
possessing low thermal conductivity. However, these parameters
are closely coupled with each other, and the optimization of one
ang), xiang.gao@hpstar.ac.cn
parameter usually leads to the deterioration of the other parame-
ters [7e13].

SnTe, an analog of PbTe without the toxic element Pb, is well-
known for the extensive intrinsic Sn vacancies, which results in
the high hole carrier concentration (n) and high ktot, providing a
great challenge to optimize the TE performance [14e17]. Previous
researchers have taken several approaches to improve the electrical
transport properties of SnTe-based materials, such as optimizing n
to reduce s [18e20] and adjusting the energy band structure to
increase S [21e23]. On the other hand, the thermal transport
properties can be optimized by introducing defects with different
scales because the second phase will form different scales of pre-
cipitates embedded in thematrix to enhance the phonon scattering
[24e26], such as point defects [27,28], nanoprecipitates [29,30],
and hierarchical architectures [31,32]. The thermal reduction effect
in SnTe system has been confirmed by nanoprecipitates such as CdS
[33], ZnS [30], CdTe [34], SrTe [35], ZnO [36], AgSbTe2 [37], AgBiTe2
[38], AgSbSe2 [39], etc.

In this work, we introduced Bi2O3 into the SnTe matrix. We
found that the nanoprecipitates in SnTeeBi2O3 led to decreased n
and enhanced S due to the energy filtering effect. We also prepared
a series of SnTe-x% Bi for comparison. Comparing the two SnTe
series, we found that it was not the extra Bi but the interfaces
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between the oxide nanoprecipitates and SnTe that contributed to
the high S and low k. Specifically, the incoherent interfaces formed
high potential barriers suppressing the low-energy carrier trans-
port. Moreover, the nanoprecipitates reduced klat significantly due
to the phonon scattering. As a result, the ZTmax value reached 0.9 at
823 K for SnTe-2% Bi2O3, and the ZTave value reached 0.40 at
300e823 K for SnTe-4% Bi2O3.
2. Results and discussion

Fig. 1(a, b) showed the powder X-ray diffraction (XRD) patterns
of SnTe-x% Bi (x ¼ 0e8%) and SnTe-y% Bi2O3 (y¼ 0e4%) samples. As
Bi content increased, there were no additional diffraction peaks
found in the cubic structure (Fm3m). But it was noteworthy that the
diffraction peak of the SnO2 and Bi2O3 second phase appeared when
y�2 with increasing Bi2O3 contents. It is well-known that the
electronegativity of Sn (1.477) element is smaller than that of Bi
(2.342), indicating that SnO2was derived from the reaction between
Sn and Bi2O3 during the high-temperature solid-phase reaction. As
shown in Fig. 1(c, d), the lattice parameters increased and then
remained constant with increasing Bi/Bi2O3 amounts, indicating
that some Bi atoms occupied Sn vacancies or substituted Sn atoms.
Figs. S1 and S2 depicted the scanning electron microscopy (SEM)
characterization results obtained from the ground and polished
samples, including secondary electron images, backscattered elec-
tron images, and the elemental analysis results of SnTe-2% Bi2O3 and
SnTe-4% Bi2O3, respectively. In SnTe-2% Bi2O3, the constituent ele-
ments are uniformly distributed in the sample. And a large number
of Bi-enriched second phases appeared in the SnTe-4% Bi2O3 sample,
which was consistent with the XRD results in Fig. 1.
Fig. 1. Powder X-ray diffraction patterns of (a) SnTe-x% Bi (x ¼ 0e8%) and (b) SnTe-y% Bi2O3

SnTe-y% Bi2O3.
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Fig. 2(a-b) represents curves of the temperature-dependent
electrical conductivity (s) of SnTeeBi and SnTeeBi2O3. It can be
seen that the decrease of s is non-significant with the 1e8% Bi
addition in Fig. 2(a). s dropped from 8965 S cm�1 for intrinsic SnTe
to 6746 S cm�1 for x¼ 8% at 300 K. However, for SnTe-y% Bi2O3, s in
the entire temperature region declined significantly with
increasing Bi2O3 amounts, from 8965 S cm�1 for intrinsic SnTe to
2913 S cm�1 for SnTe-4% Bi2O3 at 300 K and from 977 S cm�1 to
642 S cm�1 at 823 K.

To illustrate the effect of excess Bi and Bi2O3 on the electrical
properties of the SnTe matrix, we measured the hall carrier con-
centration (nH) and carrier mobility (mH) at room temperature. As
seen in Fig. 2(c), The addition of Bi caused a significant decrease in
nH at room temperature. However, when more Bi was added, nH
remained unchanged, indicating that excess Bi atoms did not
significantly affect nH. On the other hand, mH also increased firstly
and then remained almost constant. Unlike SnTe-x% Bi, nH and mH in
SnTe-y% Bi2O3 kept decreasing with the increasing Bi2O3 amount in
Fig. 2(d). The Seebeck coefficient (S) varying with temperature is
demonstrated in Fig. 2(eef). S in all samples increased with rising
temperature. We found a distinct difference of S between SnTe-x%
Bi and SnTe-y% Bi2O3. S in SnTe-x% Bi showed a significant in-
crease over the entire temperature range compared to the pristine
SnTe but did not increase further with rising Bi amounts. On the
other hand, S in SnTe-x% Bi increased gradually with rising Bi2O3

amounts.
To investigate the origins of the high S, Pisarenko curves with

different effective masses (m*) were obtained based on the single
parabolic band model. In Fig. 3(a), m* was boosted by Bi doping
from 0.079me for pristine SnTe to 0.19me for the SnTe-x% Bi samples
and remained unchanged with the rising Bi amount. However, m*
(y ¼ 0e4%) samples; and the corresponding lattice parameters of (c) SnTe-x% Bi and (d)



Fig. 3. The room-temperature Seebeck coefficients of (a) SnTe-x% Bi (x ¼ 0e8%) and (b) SnTe-y% Bi2O3 (y ¼ 0e4%) samples as a function of carrier concentration. The Pisarenko
curves are based on the single parabolic band model, and the colored points are the experimental results; Power factor of (c) SnTe-x% Bi and (d) SnTe-y% Bi2O3.

Fig. 2. The electrical conductivity of (a) SnTe-x% Bi (x ¼ 0e8%) and (b) SnTe-y% Bi2O3 (y ¼ 0e4%); the room-temperature carrier concentration and carrier mobility of (c) SnTe-x% Bi
and (d) SnTe-y% Bi2O3; the Seebeck coefficient of (e) SnTe-x% Bi and (f) SnTe-y% Bi2O3.
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Fig. 4. The total thermal conductivity of (a) SnTe-x% Bi (x ¼ 0e8%) and (b) SnTe-y% Bi2O3 (y ¼ 0e4%); electronic thermal conductivity of (c) SnTe-x% Bi and (d) SnTe-y% Bi2O3; lattice
thermal conductivity of (e) SnTe-x% Bi and (f) SnTe-y% Bi2O3.
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in SnTe-x% Bi2O3 increased gradually with the rising Bi2O3 amount,
which was much higher than the theoretically calculated curve, as
shown in Fig. 3(b). Due to the high S, PF was improved from
18.6 mW cm�1 K�2 for pristine SnTe to 23.5 mW cm�1 K�2 for SnTe-
8% Bi at 823 K. Nevertheless, SnTe-y% Bi2O3 obtained a larger
average PF when y � 3, especially, there was a pronounced boost
from 1.1 mW cm�1 K�2 for SnTe to 9.0 mW cm�1 K�2 for SnTe-y%
Bi2O3 at 300 K, as shown in Fig. 3(c, d).

Fig. 4 represents the thermal transport properties of SnTe-x% Bi
and SnTe-y% Bi2O3 (Diffusivities and sample densities can be found
in Fig. S3 and Table S1). The total thermal conductivity (ktot)
decreased significantly with 1% Bi and then decreased slightly with
rising Bi contents. However, ktot in SnTe-y% Bi2O3 decreased
dramatically with rising Bi2O3 amounts. Specifically, ktot at room
temperature reduced from 8.2 W m�1 K�1 for SnTe to
4

3.3 Wm�1 K�1 for SnTe-4% Bi2O3, as shown in Fig. 4(aeb). To get an
insight into the low ktot, we evaluated both kele and klat, according to
ktot ¼ klatþkele ¼ klat þ LsT, where L is the Lorenz number. We took
the Lorenz number as a constant value of 1.7� 10�8 W U K�1 due to
the high nH in SnTe. Fig. 4(c) shows that decreased ktot in SnTe-x% Bi
was mainly from kele decline. Nevertheless, the decreased ktot in
SnTe-y% Bi2O3 came from the simultaneous reduction of both kele
and klat in Fig. 4(d), originating from the reduced nH and the
enhanced phonon scattering, respectively. Fig. 4(e) represents the
klat trend changing with the temperature for SnTe-x% Bi. It can be
easily noted that the klat first decreased and then increased, and a
strong bipolar diffusion was clearly observed at temperatures
above 600 K. However, in Fig. 4(f), the klat of SnTe-y% Bi2O3 kept
decreasing. We could conclude that the Bi2O3 can also suppress the
bipolar diffusion effect in SnTe due to the energy filtering effect.



Fig. 5. The microstructure of the SnTee3%Bi2O3 sample: (a) The low-magnification and (b) middle-magnification bright-field TEM images; (c) High-resolution TEM image of a
selected nanoprecipitate and (d) the corresponding selected area electron diffraction pattern; (e) High angle annular dark-field STEM images and (f) the corresponding elemental
mappings attained from the STEM energy-dispersive X-ray spectroscopy; (gei) The HAADF distribution and morphology images of the nanoprecipitates at different magnifications.
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To clarify the increase of S and the decrease of klat, the SnTee3%
Bi2O3 sample was characterized by transmission electron micro-
scopy (TEM). Fig. 5(a) shows the morphological image at low
magnification, fromwhich we can clearly see the presence of grain
boundaries, nanoprecipitates, and some dislocation lines. These
nanoprecipitates tended to distribute at the grain boundaries.
Fig. 5(b) indicates one nanoprecipitate resided at the grain
boundary with the medium magnification. Fig. 5(c) is the high-
resolution TEM (HRTEM) image enlarged from Fig. 5(b) and (d) is
the corresponding selected area electron diffraction (SAED). As
shown in Fig. 5(c), the SnTe matrix on the left side of the nano-
precipitate was arranged along the [100] axis and the left side was
along [111] direction, which was confirmed by the SAED image in
Fig. 5(d). There were two sets of electron diffraction spots, repre-
senting the diffraction spots from the [100] axis (marked by the
solid line circles) and [111] axis (marked by the dashed circles),
respectively. Moreover, a split can be seen from (002) and (00-2)
(marked by the solid circles).

To determine the composition and distribution of the
nanoprecipitates, we analyzed the samples using the STEM
mode. Fig. 5(eei) show the images of the samples in HAADF
5

mode and the elemental analysis maps. Fig. 5(e) shows the
distribution of nanoprecipitates in the matrix. It can be seen
that the nanoprecipitates were mainly distributed around the
grain boundaries, with scales ranging from tens to hundreds of
nanometers. The elemental analysis map in Fig. 5(f) clearly
shows that these nanoprecipitates are Bi rich (the other
elemental mappings were shown in Fig. S4). Fig. 5(g) indicates
the distribution of the nanoprecipitates in a larger area. It can
be found that all the nanoprecipitates were embedded at the
grain boundaries instead of within the grain. Fig. 5(hei) show
that the nanoprecipitates were in a leaf-like shape. In the
HAADF image, the nanoprecipitates were brighter than the
SnTe matrix because of the element contrast difference.
Accordingly, we concluded that the composition of the nano-
precipitates is Bi-rich.

Fig. 6(a) shows a schematic diagram of the energy filtering effect
between the SnTe matrix and Bi2O3/SnO2 nanoprecipitates
[40e42]. Due to the high potential barrier at the valence band, this
interface could effectively block the low-energy hole carrier while
allowing the high energy carrier to pass through, leading to
increased m* [40,43]. As shown in Fig. 6(b) and (c), SnTe-y% Bi2O3



Fig. 6. (a) Schematic diagram of the carrier energy barrier at the interface between SnO2 and SnTe and at the interface between Bi2O3 and SnTe; The ZT value of the (b) SnTe-x% Bi
(x ¼ 0e8%) and (c) SnTe-y% Bi2O3 (y ¼ 0e4%) samples; (d) The calculated average ZT value in the range of 300 Ke823 K.
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has higher TE performance than SnTe-x% Bi, specifically at room
temperature, because of the combined effect of the enhanced S and
the reduced k. Proving that the energy filtering effect plays a critical
role in optimizing the TE properties of SnTe.

We also calculated ZTave of the samples by the following
equation:

ZTave ¼ 1
Th � Tc

ðTh

Tc

ZTdT (1)

As shown in Fig. 6(d), ZTave of SnTe-x% Bi samples at 300e823 K
was 0.31 and remained nearly constant when x � 1, while ZTave of
SnTe-y% Bi2O3 samples significantly increased with the rising Bi2O3

content, eventually reaching ~ 0.40 for SnTe-4% Bi2O3.

3. Conclusion

In this work, Bi and Bi2O3 were added to the SnTe matrix
through high-temperature solid-phase reactions. By comparing
SnTe-x% Bi and SnTe-y% Bi2O3, we found that SnTe-y% Bi2O3 pre-
sented superior TE performance than SnTe-x% Bi, which was
derived from the SnO2, Bi2O3, and Bi-rich nanoprecipitates. These
interfaces between the SnTe matrix and Bi2O3/SnO2 nano-
precipitates form a strong energy filtering effect to enhance the
average PF through increasing S. Moreover, abundant and diverse
nanoprecipitates can significantly diminish klat through enhanced
phonon scattering. The combined effects resulted in a ZTmax value
of 0.9 for SnTe-2% Bi2O3 and a ZTave of 0.4 at 300e823 K for SnTe-4%
Bi2O3. The work provides an excellent reference to develop non-
toxic high-performance TE materials.
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